Transforming Imperfectly Nested Loops
Classes of loop transformations:

- **Iteration re-numbering:** (eg) loop interchange

 Example

  ```
  DO 10 J = 1,100
  DO 10 I = 1,100
  Y(I) = Y(I) + A(I,J)*X(J)
  10 Z(I) = ....
  vs
  DO 10 J = 1,100
  DO 10 I = 1,100
  Y(I) = Y(I) + A(I,J)*X(J)
  10 Z(I) = ....
  ```

 All statements in body affected identically.

- **Statement re-ordering:** (eg) loop distribution/jamming

 Example

  ```
  DO 10 I = 1,100
  Y(I) = ....
  10 Z(I) =...
  vs
  DO 20 J = 1,100
  20 Z(I) = ...Y(I)...
  ```

 Statement re-ordering can be static or dynamic
• **Statement transformation:**

 Example: scalar expansion

 \[
 \text{DO 10 I = 1,100} \quad \text{DO 10 I = 1,100}
 \]

 \[
 T = f(I) \quad \text{vs} \quad T[I] = f(I)
 \]

 \[
 10 \ X(I,J) = T*T \quad 10 \ X(I,J) = T[I]*T[I]
 \]

 Statements themselves are altered.
Iteration renumbering transformations

We have already studied linear loop transformations.

Index set splitting: $N \rightarrow N1 + N2$

$$
\begin{align*}
\text{DO 10 I = 1, N} & \quad \text{DO 10 I = 1, N1} \\
10 & \quad 10 \\
S & \quad S \\
\text{vs} & \\
\text{DO 20 I = N1+1, N} & \quad \text{DO 10 I = 1, N1} \\
10 & \quad 10 \\
S & \quad S
\end{align*}
$$

Special case: loop peeling - only the first/last/both first and last iterations are done separately from main loop.

Legality: always legal
Typical use: Eliminate a ‘problem iteration’

```plaintext
DO 10 I = 1, N
10 X(aI + b) = X(c) + .... vs

Weak SIV subscript: dependence equation is \( aI_w + b = c \)
\[ \Rightarrow I_w = (c - b)/a \]

Split index set of loop into 3 parts:
- DO-ALL loop that does all iterations before \( I_w \)
- Iteration \( I_w \) by itself
- DO-ALL loop that does all iterations after \( I_w \)

Note: distance/direction are not adequate abstractions
Strip-mining: \( N = N1 \times N2 \)

\[
\text{DO } 10 \ I = 1, N \\
10 \ Y(I) = X(I) + 1 \quad \Rightarrow \quad \text{DO } 10 \ I = Is, \min(Is + s - 1, N) \\
10 \ Y(I) = X(I) + 1
\]

Original Loop

Stripmined Loop: strip size = 2

Inner loop does ‘s’ iterations at a time.
Important transformation for vector machines:
‘s’ = vector register length
Strip-mining is always legal.
To get clean bounds for inner loop, do last ‘N mod s’ iterations separately: index-set splitting

DO 10 Is = 1, N, s
   DO 10 I = Is, min(Is + s - 1, N)
   10 Y(I) = X(I) + 1

=>

DO 10 Is = 1, s*(N div s)
   DO 10 I = Is, Is + s - 1
   10 Y(I) = X(I) + 1

DO 20 I = (N div s)*s + 1 to N
   20 Y(I) = X(I) + 1
Tiling: multi-dimensional strip-mining \( N1 \times N2 = t1 \times t2 \times N3 \times N4 \)

Old names for tiling: stripmine and interchange, loop quantization
**Statement Sinking:** useful for converting some imperfectly-nested loops into perfectly-nested ones

\[
\begin{align*}
\text{do } k &= 1, N \\
A(k,k) &= \sqrt{A(k,k)} \\
\text{do } i &= k+1, N \\
A(i,k) &= A(i,k) / A(k,k) \quad \text{---- sink into inner loop} \\
\text{do } j &= k+1, i \\
A(i,j) &= A(i,k) \times A(j,k)
\end{align*}
\]
Basic idea of statement sinking:

1. Execute a pre/post-iteration of loop in which only sunk statement is executed.
2. Requires insertion of guards for all statements in new loop.

Singly-nested loop (SNL): imperfectly-nested loop in which each loop has only one other loop nested immediately within it.

Locality enhancement of SNL’s in MIPSPro compiler:

• convert to perfectly-nested loop by statement sinking,
• locality-enhance perfectly-nested loop, and
• convert back to imperfectly-nested loop in code generation.
Statement Reordering Transformations

loop jamming/fusion <=> loop distribution/fission

Example

```
DO 10 I = 1,100
 Y(I) =
10 Z(I) = ...Y(I)... vs. DO 20 J = 1,100
 10 Y(I) = ...
 20 Z(I) = ...Y(I)...
```

Utility of distribution: Can produce parallel loops as below

```
DO 10 I = 1, 100
 Y(I) =
10 Z(I) = Y(I-1).... vs. DOALL 20 I’ = 1,100
 10 Y(I) =
 20 Z(I’) = Y(I’-1)
```

Loop fusion: promote reuse, eliminate array temporaries
**Legality of loop fission:**

build the statement dependence graph

DO I = 1,N
A(I) = A(I) + B(I-1)
B(I) = C(I-1)*X + 1
C(I) = 1/B(I)
D(I) = sqrt(C(I))

DO I = 1,N
B(I) = C(I-1)*X + 1
C(I) = 1/B(I)

DO I = 1,N
A(I) = A(I) + B(I-1)
DO I = 1,N
D(I) = sqrt(C(I))

<table>
<thead>
<tr>
<th>Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(I) = A(I) + B(I-1)</td>
</tr>
<tr>
<td>B(I) = C(I-1)*X + 1</td>
</tr>
<tr>
<td>C(I) = 1/B(I)</td>
</tr>
<tr>
<td>D(I) = sqrt(C(I))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Statement Dependence</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO I = 1,N</td>
</tr>
<tr>
<td>B(I) = C(I-1)*X + 1</td>
</tr>
<tr>
<td>C(I) = 1/B(I)</td>
</tr>
<tr>
<td>DO I = 1,N</td>
</tr>
<tr>
<td>A(I) = A(I) + B(I-1)</td>
</tr>
<tr>
<td>DO I = 1,N</td>
</tr>
<tr>
<td>D(I) = sqrt(C(I))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acyclic Condensate</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO I = 1,N</td>
</tr>
<tr>
<td>B(I) = C(I-1)*X + 1</td>
</tr>
<tr>
<td>C(I) = 1/B(I)</td>
</tr>
<tr>
<td>DO I = 1,N</td>
</tr>
<tr>
<td>A(I) = A(I) + B(I-1)</td>
</tr>
<tr>
<td>DO I = 1,N</td>
</tr>
<tr>
<td>D(I) = sqrt(C(I))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>New Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO I = 1,N</td>
</tr>
<tr>
<td>B(I) = C(I-1)*X + 1</td>
</tr>
<tr>
<td>C(I) = 1/B(I)</td>
</tr>
<tr>
<td>DO I = 1,N</td>
</tr>
<tr>
<td>A(I) = A(I) + B(I-1)</td>
</tr>
<tr>
<td>DO I = 1,N</td>
</tr>
<tr>
<td>D(I) = sqrt(C(I))</td>
</tr>
</tbody>
</table>

- Build the statement dependence graph:
  - nodes: assignment statements/if-then-else’s
  - edges: dependences between statements (distance/direction is irrelevant)

- Find the acyclic condensate of statement dependence graph

- Each node in acyclic condensate can become one loop nest

- Order of new loop nests: any topological sort of condensate

- Nested loop fission: do in inside-out order, treating inner loop nests as black boxes
Legality of loop fusion:

Usually, we do not compute dependences across different loop nests.
Easy to compute though:

Flow dependence: test for fusion preventing dependence

\[
\begin{align*}
I_w &= J_r + 1 \\
J_r &< I_w \\
1 &\leq I_w \leq N \\
1 &\leq J_r \leq N
\end{align*}
\]

Loop fusion is legal if
(i) loop bounds are identical
(ii) loops are adjacent
(iii) no fusion-preventing dependence
Statement transformation:

Example: scalar expansion

\begin{align*}
\text{DO 10 } & I = 1,100 & \text{DO 10 } & I = 1,100 \\
T & = f(I) & \text{vs} & T[I] = f(I) \\
10 \ X(I,J) & = T \times T & 10 \ X(I,J) & = T[I] \times T[I]
\end{align*}

Anti- and output-dependences (resource dependences) arise from "storage reuse" in imperative languages (cf. functional languages).

Eliminating resource dependences: eliminate storage reuse.

Standard transformations: scalar/array expansion (shown above)
We got into perfectly-nested loop transformations by studying the effect of interchange and tiling on key kernels like matrix-vector product and matrix-matrix multiplication.

Let us study how imperfectly-nested loop transformations can be applied to other key routines to get a feel for the issues in applying these transformations.
Cholesky factorization from a numerical analyst’s viewpoint:

• used to solve a system of linear equations $Ax = b$

• $A$ must be symmetric positive-definite

• compute $L$ such that $L \times L^T = A$, overwriting lower-triangular part of $A$ with $L$

• obtain $x$ be solving two triangular systems
Cholesky factorization from a compiler writer’s viewpoint:

• Cholesky factorization has 6 loops like MMM, but loops are imperfectly-nested.

• All 6 permutations of these loops are legal.

• Variations of these 6 basic versions can be generated by transformations like loop distribution.
Column Cholesky: kij, right-looking versions

\[
\begin{align*}
&\text{do } k = 1, N \\
&A(k,k) = \sqrt{A(k,k)} \quad //\text{square root statement} \\
&\text{do } i = k+1, N \\
&A(i,k) = A(i,k) / A(k,k) \quad //\text{scale statement} \\
&\text{do } i = k+1, N \\
&\quad \text{do } j = k+1, i \\
&\quad A(i,j) -= A(i,k) * A(j,k) \quad //\text{update statement}
\end{align*}
\]

- Three assignment statements are called square root, scale and update statements.
- Compute columns of L column-by-column (indexed by \(k\)).
- Eagerly update portion of matrix to right of current column.
- Note: most data references and computations in update.
Interchanging i and j loops in kij version gives kji version.

Update is performed row by row.

\[
\begin{align*}
do \ k &= 1, \ N \\
A(k,k) &= \sqrt{A(k,k)} \\
do \ i &= k+1, \ N \\
A(i,k) &= A(i,k) / A(k,k) \\
do \ j &= k+1, \ N \\
do \ i &= j, \ N \\
A(i,j) &= A(i,k) * A(j,k)
\end{align*}
\]
Fusion of the two $i$ loops in $kij$ version produces a SNL.

\begin{verbatim}
  do k = 1, N
        A(k,k) = sqrt (A(k,k))
  do i = k+1, N
        A(i,k) = A(i,k) / A(k,k)
  do j = k+1, i
        A(i,j) -= A(i,k) * A(j,k)
\end{verbatim}
Column Cholesky: jik left-looking versions

\[
\begin{align*}
do \ j = 1, \ N \\
do \ i = j, \ N & \quad \text{//interchange i and k loops for jki version} \\
do \ k = 1, \ j-1 & \\
A(i,j) &= A(i,k) \times A(j,k) \\
A(j,j) &= \sqrt{A(j,j)} \\
do \ i = j+1, \ N & \\
A(i,j) &= A(i,j) / A(j,j)
\end{align*}
\]

• Compute columns of L column-by-column.
• Updates to column are done lazily, not eagerly.
• To compute column \( j \), portion of matrix to left of column is used to update current column.
Row Cholesky versions

for each element in row $i$
- find inner-product of two blue vectors
- update element $x$
- scale
- take square-root at end

These compute the matrix $L$ row by row. Here is $ijk$-version of row Cholesky.

\[
\begin{align*}
\text{do } & i = 1, N \\
\text{do } & j = 1, i \\
\text{do } & k = 1, j-1 \\
A(i,j) & = A(i,k) \cdot A(j,k) \\
\text{if } & (j < i) A(i,j) = A(i,j)/A(j,j) \\
\text{else } & A(i,i) = \sqrt{A(i,i)}
\end{align*}
\]
Locality enhancement in Cholesky factorization

- Most of data accesses are in update step.
- Ideal situation: distribute loops to isolate update and tile update loops.
- Unfortunately, loop distribution is not legal because it requires delaying all the updates till the end.
do k = 1, N
  A(k,k) = sqrt (A(k,k))  //square root statement
  do i = k+1, N
    A(i,k) = A(i,k) / A(k,k)  //scale statement
  do i = k+1, N
    do j = k+1, i
      A(i,j) -= A(i,k) * A(j,k)  //update statement
    => loop distribution (illegal because of dependences)

do k = 1, N
  A(k,k) = sqrt (A(k,k))  //square root statement
  do i = k+1, N
    A(i,k) = A(i,k) / A(k,k)  //scale statement
  do k = 1, N
    do i = k+1, N
      do j = k+1, i
        A(i,j) -= A(i,k) * A(j,k)  //update statement
After distribution, we could have tiled update statement, and obtained great performance....

\[
\begin{align*}
\text{do } & k = 1, N \\
\text{do } & i = k+1, N \\
\text{do } & j = k+1, i \\
& A(i,j) -= A(i,k) \times A(j,k) \quad \text{//update statement}
\end{align*}
\]

Dependence vectors:

- \((A(i,j) \rightarrow A(i,j))\): \((+,0,0)\)
- \((A(i,j) \rightarrow A(i,k))\): \((+,0,+)\)
- \((A(i,j) \rightarrow A(j,k))\): \((+,0+,+)\)
Let us study two distinct approaches to locality enhancement of Cholesky factorization:

- transformations to extract MMM computations hidden within Cholesky factorization: improvement of BLAS-3 content

- transformations to permit tiling of imperfectly-nested code
Key idea used in LAPACK library: ”partial” distribution

- do processing on block-columns
- do updates to block-columns lazily
- processing of a block-column:
  1. apply all delayed updates to current block-column
  2. perform square root, scale and local update steps on current block column

- Key point: applying delayed updates to current block-column can be performed by calling BLAS-3 matrix-matrix multiplication.

How do we think about this in terms of loop transformations?
Intermediate representation of Cholesky factorization

Perfectly-nested loop that performs Cholesky factorization:

```plaintext
do k = 1, N
 do i = k, N
 do j = k, i
 if (i == k && j == k) A(k,k) = sqrt (A(k,k));
 if (i < k && j == k) A(i,k) = A(i,k) / A(k,k);
 if (i > k && j > k) A(i,j) -= A(i,k) * A(j,k);
```

Easy to show that

- loop nest is fully permutable, and
- guards are mutually exclusive, so order of statement is irrelevant.
Generating intermediate form of Cholesky:

Converting kij-Fused version: only requires code sinking.

Converting kji version:

- interchange i and j loops to get kij version,
- apply loop fusion to i loops to get SNL, and
- use code sinking.

Converting other versions: much more challenging....
Convenient to express loop bounds of fully permutable perfectly nested loop in the following form:

\[ \text{do } \{i,j,k\} \text{ in } 1 \leq k \leq j \leq i \leq N \]

\[ \text{if } (i == k \&\& j == k) \ A(k,k) = \sqrt{A(k,k)}; \]
\[ \text{if } (i > k \&\& j == k) \ A(i,k) = A(i,k) / A(k,k); \]
\[ \text{if } (i > k \&\& j > k) \ A(i,j) -= A(i,k) \times A(j,k); \]
LAPACK-style blocking of intermediate form

Two levels of blocking:

1. convert to block-column computations to expose BLAS-3 computations
2. use handwritten codes to execute the BLAS-3 kernels
(1) Stripmine the j loop into blocks of size B:

\[
\text{do } js = 0, N/B -1 \quad // \text{js enumerates block columns}
\]

\[
\text{do } j = B*js +1, B*js+B
\]

\[
\text{do } \{i,k\} \text{ in } 1 \leq k \leq j \leq i \leq N
\]

\[
\text{if } (i == k & j == k) \quad A(k,k) = \sqrt{A(k,k)};
\]

\[
\text{if } (i > k & j == k) \quad A(i,k) = A(i,k) / A(k,k);
\]

\[
\text{if } (i > k & j > k) \quad A(i,j) -= A(i,k) * A(j,k);
\]

(2) Interchange the j loop into the innermost position:

\[
\text{do } js = 0, N/B -1
\]

\[
\text{do } i = B*js +1, N
\]

\[
\text{do } k = 1, \text{min}(i,B*js+B)
\]

\[
\text{do } j = \text{max}(B*js +1,k), \text{min}(i,B*js+B)
\]

\[
\text{if } (i == k & j == k) \quad A(k,k) = \sqrt{A(k,k)};
\]

\[
\text{if } (i > k & j == k) \quad A(i,k) = A(i,k) / A(k,k);
\]

\[
\text{if } (i > k & j > k) \quad A(i,j) -= A(i,k) * A(j,k);
\]
(3) Index-set split i loop into $B^*js + 1:B^*js + B$ and $B^*js + B + 1:N$.

(4) Index-set split k loop into $1:B^*js$ and $B^*js + 1:\min(i,B^*js+B)$.

do js = 0, N/B -1

//Computation 1: an MMM
do i = $B^*js + 1$, $B^*js + B$
do k = 1,$B^*js$
do j = $B^*js + 1,i$
   A(i,j) -= A(i,k) * A(j,k);

//Computation 2: a small Cholesky factorization
do i = $B^*js + 1,B^*js + B$
do k = $B^*js + 1,i$
do j = k,i
   if (i == k && j == k) A(k,k) = sqrt (A(k,k));
   if (i > k && j == k) A(i,k) = A(i,k) / A(k,k);
   if (i > k && j > k) A(i,j) -= A(i,k) * A(j,k);
//Computation 3: an MMM
do i = B*js+ B+1,N
    do k = 1,B*js
        do j = B*js+1,B*js+B
            A(i,j) -= A(i,k) * A(j,k);
    
//Computation 4: a triangular solve
do i = B*js+ B+1,N
    do k = B*js+1,B*js+B
        do j = k,B*js+B
            if (j == k) A(i,k) = A(i,k) / A(k,k);
            if (j > k) A(i,j) -= A(i,k) * A(j,k);
Observations on code:

- Computations 1 and 3 are MMM. Call BLAS-3 kernel to execute them.

- Computation 4 is a block triangular-solve. Call BLAS-3 kernel to execute it.

- Only unblocked computations are in the small Cholesky factorization.
Critique of this development from compiler perspective:

• How does a compiler where BLAS-3 computations are hiding in complex codes?
• How do we recognize BLAS-3 operations when we expose them?
• How does a compiler synthesize such a complex sequence of transformations?
Compiler approach:

Tile the fully-permutable intermediate form of Cholesky:

\[
\begin{align*}
&\text{do } \{\text{is,js,ks}\} \quad 0 \leq \text{ks} \leq \text{js} \leq \text{is} \leq N/B -1 \\
&\text{do } \{i,j,k\} \quad B*\text{is} < i \leq B*\text{is} + B \\
&\text{ } \quad B*\text{js} < j \leq B*\text{js} + B \\
&\text{ } \quad B*\text{ks} < k \leq B*\text{ks} + B \\
&\text{if (i == k && j == k)} \quad A(k,k) = \sqrt{A(k,k)}; \\
&\text{if (i > k && j == k)} \quad A(i,k) = A(i,k) / A(k,k); \\
&\text{if (i > k && j > k)} \quad A(i,j) -= A(i,k) * A(j,k); \\
\end{align*}
\]

• Loop nest is,js,ks is fully permutable, as is i,j,k loop nest.
• Choose k,j,i order to get good spatial locality.
Strategy for locality-enhancement of imperfectly-nested loops:

1. Convert an imperfectly-nested loop into a perfectly-nested intermediate form with guards by code sinking/fusion/etc.
2. Transform intermediate form as before to enhance locality.
3. Convert resulting perfectly-nested loop with guards back into imperfectly-nested loop by index-set splitting/peeling.

How do we make all this work smoothly?