What is subtyping?
- Subtyping = subset
- Subtyping = subclasses
- Subtyping = substitutability
- Subtyping = polymorphism

All valid perspectives, but not all the same meaning.

Subtyping Semantically = implicit coercions

- Types `

- Subtype relation

- Function converting values of \(A \) to values of \(B \)

How can we take advantage of this?

Some languages let programmers define their own coercions to extend the subtyping relation.

- C++
- Scala

What can go wrong?

Ambiguity

In C++ and Scala, how the compiler inserts coercions can affect the semantics of a program.

Preventing Ambiguity

- \(A \)
- \(B \)
- \(C \)

- Coerce \(A \) to \(B \) is due to

- Coerce \(A \) to \(C \) is due to

- Coerce \(A \) to \(A \) is due to

- Coerce \(A \) to \(B \) is due to

- Coerce \(A \) to \(C \) is due to
Number Conversion Example

```
int isDouble double isInt we fail to coerce
```

Convenient, but what goes wrong?

```
2.5 \rightarrow 2 \rightarrow 2.0 \rightarrow int \rightarrow double
```

```
\nequivalence \neq \text{identity} +
```

```
\text{losses of transforming like floor}
```

Subtyping Categorically

```
But First!
```

```
What's a category??
```

A Category is:

1. A collection of objects, e.g. ABC
2. For each pair of objects A and B, a collection of morphisms, e.g. \(f: A \rightarrow B \) or \(A \rightarrow B \)
3. For every object A, \(A \rightarrow A \) identity
4. For this looks like a graph, but there's more!

A Category also has:

3. For every object \(A \), a "special" morphism \(A \rightarrow A \)
4. For every \(A \rightarrow B \rightarrow C \), a morphism \(A \rightarrow C \) called composition
5. More to come later...

Example: Category of Sets (called \(\mathbf{Set} \))

1. The objects are all possible sets
2. The morphisms from set \(A \) to set \(B \) are all possible functions from \(A \) to \(B \)
3. \(\text{id} \) is the identity function: \(\text{id} \)
4. morphism composition is function composition

```
Classic example, but not all morphisms are functions!
```

Example: Subtyping as a category

1. The objects are the types
2. There exists a unique morphism from \(A \rightarrow B \) if \(A \) is a subtype of \(B \)
3. \(\text{id} \) exists because of reflexivity
4. composition is defined because of transitivity

The categories correspond to their
(i.e. a set with \(\text{morphisms} \) to \(\text{relation} \) between any two objects)
A Category (lastly) also has:

5. For all \(f : A \to B \), \(\forall g : f = f \circ g \cdot id_B \)
 i.e. composition of identities does nothing

6. For all \(f : A \to B \), \(\forall g, h : f = g \circ h \cdot (f, id_B) \)
 i.e. composition is associative

Thus, give a (possibly empty) path of morphisms
From \(A \) to \(B \), there is no unambiguous
way to compose that path into a
morphism from \(A \) to \(B \)!

A Functor from \(C \) to \(D \) is:

1. A Function from objects of \(C \)
 to objects of \(D \)

2. A Function from \(A \to B \)
 to \(F(A) \to F(B) \)
 preserves more!

3. \(F(\text{id}_A) = \text{id}_{F(A)} \)
 (preserves identities)

4. \(F(f \circ g) = F(f) \cdot F(g) \)
 (preserves composition)

In particular for subtyping

3) \(\text{coerce}_A \cdot A = \text{id}_{\text{exs}} \)

4) \(\text{coerce}_A \cdot \text{coerce}_B \cdot \text{coerce}_C = \text{coerce}_C \cdot \text{coerce}_B \cdot \text{coerce}_A \)

so inambiguity is related to
categorical structure

A Factor also has:

Sneak Peek:

What does

"Hello" + 1+2

evaluate to?