Opfibrations

CS 6118 - Types and Semantics

A SQL query such as SELECT first + " " + last FROM Employees can be viewed as a comprehension
for (e in Employees) e.first + " " + e.last. We can formalize these constructs in a flexible manner
by using what are known as opfibrations. This categorty theoretic construct is a natural fit for the construct,
and taking such an abstract perspective guides us as to how we should interepret comprehension syntax in
other variations of databases, such as allowing redundant entries, probabilistic entries, or incorporating other
document information such as distances between words. First, to understand this perspective, we have to
see how we can design morphisms so that they can represent query answers.

1 Tableau Theory

Suppose we have the following database instance:

theatre movie time
AMC Spider-Man | 6pm
AMC Spider-Man | 9pm
AMC Metropolis | 6pm
Cinemapolis Babe 6pm
Cinemapolis | Metropolis | 9pm
Cinemapolis Babe 6pm

Now I'd like to see a movie at 6, but I might be late, so I only want to see a movie if it’s also showing at
that same theatre later at 9. You can think of this query as a database (or tableau):

theatre | movie | time
t m 6pm
t m 9pm

This says I want a theatre ¢ and movie m such that m is playing at ¢t at both 6pm and 9pm.

Now, call the above table @@, and suppose we have some database instance I that we want results from.
A result is any assignment 6 of ¢ and m such that, for all entries e in @, e[f] (i.e. the entry e after replacing ¢
and m with their assignments in ) is in 7. We call such a 6 a (constant preserving) database homomorphism
from @ to I. As such, we can formalize a category for databases, though for simplicity we will ignore constant
preservation.

Definition (Dat - The Category of Databases). Suppose we have some category Sch of schemas and schema
morphisms, and we have some functor [—] : Sch — Set specifying the semantics of each schema and schema
morphism. Then define Dat as the category with

Objects (X, D). A schema ¥ and a finite subset D of [X]
Morphisms (f,p) : (3, D) — (X, D’). A schema morphism f : ¥ — X/ and a proof p of Vd € D.[f](d) € D’

2 Opfibrations

There is an important functor from Dat to Set called the underlying functor:

Definition (U : Dat — Set - The underlying functor of Dat).



U((Z,D)) =%
u(lfp) =f

This picks out the underlying structure of databases and database morphisms. Thus databases can be
seen as structure laid over schemas. As we will see, in this particular case the overlaid structure forms an
opfibration, which consequently gives a semantics to comprehensions.

Now let us reconsider the comprehension for (e in Employees) e.first + " " + e.last. Employees
is a database, i.e. something from the overlaid world. Ae. e.first + " " + e.last on the other hand is a
simple function, i.e. something from the underlying world. In particular, it is a function from the underlying
structure of Employees to a new schema, namely just string. We expect the result R of this comprehen-
sion to be a database with schema string such that our function, call it name, applied to each entry in
Employees produces an entry in R. More formally, we want a database R on scheme string and database
homomorphism f : (Employees, employee) — (R, string) such that U(f) = name. This is called a lifting of
name; we are taking a non-database function and lifting it into a database homomorphism.

Now, there can be many such liftings of name. Our expectation is that R has precisely the entries
corresponding to applying name to the entries in Employees, no more, no less. The “no less” requirement
corresponds to saying that name must be a database homomorphism from Employees to R. The “no more”
requirement, though, requires more attention. We can think of this as saying that R must be the smallest
database such that name is a database homomorphism from Employees to it. In other words, given any
other database D such that name is a database homomorphism from Employees to D, R must be a subset
of D. We can rephrase the latter clause as saying that the identity function from string to string must
be a database homomorphism from R to D. This leads us to the concept of an opcartesian morphism.

Definition. Opcartesian Morphism Suppose we have some category (call it Dat) representing the overlaid
structure, another category (call it Sch) representing the underlying structure, and a functor U : Dat — Sch
mapping overlaid structure to its underlying structure. Suppose f : D — E is a morphism in Dat. f is
opcartesian if, for any morphism g : U(E) — U(F) in Sch and h : D — F with U(h) = U(f) ; g, there exists

aunique g: £ — F with U(g) =g and f;g = h.

The intent of this definition is to convey that E has the minimal structure necessary to make f a lifting
of U(f). The idea is that, given any other g extending U(f) such that the composition can be lifted (i.e.
there is an h with underlying structure U(f);g), then since E has so little structure it is guaranteed that
g can be lifted as well (i.e. g) to preserve that overlaid structure. Notice that, if g is the identity function,
then U(h) must be U(f), i.e. another lifting of U(f), so f being opcartesian means that there is a lifting of

the identify function from F to F' showing that E “fits inside” F.

Definition. Opfibration Suppose we have some category (call it Dat) representing the overlaid structure,
another category (call it Sch) representing the underlying structure, and a functor U : Dat — Sch mapping
overlaid structure to its underlying structure. This triple is an opfibration if, for every f : U(D) — X there
is an £ and opcartesian morphism f : D — E with U(f) = f.

The opcartesian lifting f of f is unique up to isomorphism, so the convention is to denote its codomain
(E in the above definition) as fi(D).

Example: Dat Given a database (X, D) and a schema morphism f from U((X, D)) = ¥ to some X,
define fi(D) as (X', D’) where D’ is the subset {f(d) | d € D} or equivalently {d' € D' | 3d € D.d’' = f(d)}
both guaranteed to be finite since D is finite. Clearly f maps elements in D to elements in D’, so we have
a database homomorphism from (¥, D) to (¥, D’) which is a lifting of f.

To prove that this is an opcartesian lifting, suppose we have a schema morphism g from U(fi(D)) = ¥’
to ¥, and we have a database homomorphism from (3, D) to some (X", D") lifting f; g, then we need to
prove that g can be lifted to a database homomorphism from (X', D) to (X", D”). So suppose d’ is in D’,
then we need to show g(d’) is in D”. By definition of D', there must be a d in D such that d' = f(d), so
that we can alternatively show that g(f(d)) is in D”. Fortunately, since f;g can be lifted to a database
homomorphism and d is in D, by definition this means that g(f(d)) is in D”, thus proving that g can be
lifted to a database homomorphism of the appropriate type.



Remark Notice that the definition of fi(D) is of the form “have only whatever structure D has” as made
explicit by the use of the existential quantifier. f; essentially pushes out the structure of D onto the codomain
of f, which is why it corresponds to comprehensions.

Example: Structured Documents Often not only the contents of a document but the relative positions
of those contents are important for searching. For example, “trunk” has many meanings, but it is much
more likely to have a specific meaning if it occurs close to the word “elephant”. Thus if we wanted to adapt
the tableau-model approach to queries to structured documents, we would make a structured document
containing just the words “trunk” and “elephant” that are noted to be, say, 5 words apart. We would
then want such a structured document to have a homomorphism to any other document where “trunk” and
“elephant” occur 5 words or fewer apart. In particular, this means we want to allow contractive mappings.

Definition (Met* : The category of simplified metric spaces with contractive mappings).
Objects (X,d). A set X and a function d: X x X — [0, 0]
Morphisms (f,p):(X,d) —(Y,d'). A function f:X — X’ and proof p of Vz,z' € X.d'(f(x), f(2")) <d(z,z")

Now suppose we have a simplified metric space (X, d) and a function f : X — Y. Define fi(d) as (Y,d")
where d'(y,y’) = ming e x|f(a)=yrf(z')=y d(x,2"). Again, clearly f can be lifted to a contractive mapping
from (X, d) to (Y,d’). Notice this definition implicitly relies on the fact that co is a valid distance, otherwise
we could only define fy when f is surjective.

Now suppose we have a simplified metric space (Z,d”) and a function g : Y — Z such that f;g can be
lifted to a contractive mapping from (X, d) to (Z,d"). Then given y and v’ in Y, d"(g(y), g(y’)) is less than
or equal to d(z,z’) for all  and 2’ in X such that y = f(z) and vy’ = f(2') since f;g is contractive, which
implies d”(g(y),g(y')) is less than or equal to min, ;¢ x|f(z)=yn f(z/)=y (2, 2") which is the definition of d'.
Thus g can be lifted to a contractive mapping of the appropriate type, consequently implying that fi(d) gives
an opcartesian lifting. This shows how comprehension syntax can be applied to simplified metric spaces.

Non-Example: Irreflexive Relations Irreflexive relations do not form an opfibration. They do occa-
sionally have opcartesian liftings, but not always.

Definition (Irrefl : The category of irreflexive relations).
Objects (X, R,i). A set X, a subset R C X x X, and a proof ¢ of Vo € X.—(z R x)
Morphisms (f,p): (X, R,i)— (Y, S,j). A function f: X =Y and proof p of Vo, 2’ € X.x R2'= f(z) S f(z')

Now consider the relation ({a,b},{(a,b)}) and the unique function f from {a,b} to {c}. Not only is
there no opcartesian lifting of f, there is no lifting of f at all. For f to be made relation-preserving, ¢ would
have to be related to itself, which would make the relation not irreflexive. The main problem is that f maps
to distinct elements to the same element. For injective f, there is an opcartesian lifting. Thus, one could
apply comprehension syntax to irreflexive relations provided the language is restricted so that the body of a
comprehension is always injective.



