Exercise 1. singleton : Set ⇒ L and flatten : LL ⇒ L are two particularly important natural transformations pertaining to lists. The following equate various compositions of these natural transformations: Write each of the diagrams as polymorphic programs of the form \(\lambda l : \tau. \ldots \) for some type \(\tau \) (referencing a type variable \(\alpha \)) using the following "library" functions with explicit subscripts (i.e. use explicit type arguments):

- \(\text{map}_{\alpha, \beta} : (\alpha \to \beta) \to (L\alpha \to L\beta) \)
- \(\text{singleton}_{\alpha} : \alpha \to L\alpha \)
- \(\text{flatten}_{\alpha} : LL\alpha \to L\alpha \)

Then prove the above equalities.

Exercise 2. Let Map(C, D) be the following lax relational category:

- an object \(V \) maps each object \(A \) of \(C \) to an object \(V(A) \) of \(D \)
- a morphism \(E \) from \(V_1 \) to \(V_2 \) maps each morphism \(m : A \to B \) of \(C \) to a morphism \(E(m) : V_1(A) \to V_2(B) \)
- a (possibly empty) path \(V_0 \xrightarrow{E_1} V_1 \xrightarrow{E_2} \cdots V_{n-1} \xrightarrow{E_n} V_n \) composes to \(V_0 \xrightarrow{E} V_n \) whenever
 \[
 \forall A_0 \xrightarrow{m_1} A_1 \xrightarrow{m_2} \cdots A_{n-1} \xrightarrow{m_n} A_n. \ E_1(m_1); \ldots; E_n(m_n) = E(m_1; \ldots; m_n)
 \]

This is a lax relational category because composition is defined as a relation, rather than function, from paths to morphisms (that satisfies laws akin to a lax notion of associativity/identity).

Prove that functors from \(C \) to \(D \) precisely coincide with endomorphisms \(E : V \to V \) of Map(C, D) with the property that all paths of the form \(E^* : V \to V \), i.e. arbitrary repetitions of \(E \), compose to \(E \). Prove that natural transformations from the functor coinciding with \(V_1 \xrightarrow{E_1} V_1 \) to the functor coinciding with \(V_2 \xrightarrow{E_2} V_2 \) precisely coincide with morphisms \(T : V_1 \to V_2 \) of Map(C, D) with the property that all paths of the form \(E_1^*TE_2^* : V_1 \to V_2 \) compose to \(T \).