Practice 9

Ross Tate

April 17, 2020

Exercise 1. An idempotent semigroup is a semigroup $\langle A, + \rangle$ satisfying the property $\forall a \in A.a + a = a$. For example, min and max on N are both idempotent semigroups. Show that the full subcategory of **Sgr** containing precisely the idempotent semigroups is *coreflective*.

Exercise 2. Show that a transposition is precisely an isomorphism between the sources $\mathbf{C} \leftarrow (L \downarrow \mathbf{D}) \rightarrow \mathbf{D}$ and $\mathbf{C} \leftarrow (\mathbf{C} \downarrow R) \rightarrow \mathbf{D}$ in \mathbf{C} . (See here for a refresher on notation and for historical insight.)

Exercise 3. Using only 2-cell diagrams, prove that adjunctions can be sequentially composed (similarly to how transpositions can be sequentially composed).

Exercise 4. Viewing **Rel**(1) as a concrete category over **Set**, there is a functor (denoted $\pi_{X,Y}^*$) from the fibre over a given set X to the fibre over the set $X \times Y$ given by $\phi \subseteq X \mapsto \{\langle x, y \rangle \mid x \in \phi \land y \in Y\} \subseteq X \times Y$. Give the left adjoint and give the right adjoint to this functor. (Hint: each corresponds to a common construct in logic.)