Practice 8

Ross Tate

May 4, 2020

Exercise 1. singleton : Set $\Rightarrow \mathbb{L}$ and flatten : $\mathbb{LL} \Rightarrow \mathbb{L}$ are two particularly important natural transformations pertaining to lists. The following equate various compositions of these natural transformations: Write each of the

diagrams as polymorphic programs of the form $\lambda 1 : \tau$... for some type τ (referencing a type variable α) using the following "library" functions with explicit subscripts (i.e. use explicit type arguments):

$$\begin{split} \mathtt{map}_{\alpha,\beta} &: (\alpha \to \beta) \to (\mathbb{L}\alpha \to \mathbb{L}\beta) \\ \mathtt{singleton}_\alpha &: \alpha \to \mathbb{L}\alpha \\ \mathtt{flatten}_\alpha &: \mathbb{L}\mathbb{L}\alpha \to \mathbb{L}\alpha \end{split}$$

Then prove the above equalities.

Exercise 2. Let Map(C, D) be the following *lax relational* category:

- an object V maps each object A of C to an object V(A) of D
- a morphism E from V_1 to V_2 maps each morphism $m: A \to B$ of C to a morphism $E(m): V_1(A) \to V_2(B)$
- a (possibly empty) path $V_0 \xrightarrow{E_1} V_1 \xrightarrow{\cdots} V_{n-1} \xrightarrow{E_n} V_n$ composes to $V_0 \xrightarrow{E} V_n$ whenever

$$\forall A_0 \xrightarrow{m_1} A_1 \xrightarrow{\dots} A_{n-1} \xrightarrow{m_n} A_n. \ E_1(m_1); \dots; E_n(m_n) = E(m_1; \dots; m_n)$$

This is a lax relational category because composition is defined as a relation, rather than function, from paths to morphisms (that satisfies laws akin to a lax notion of associativity/identity).

Prove that functors from **C** to **D** precisely coincide with endomorphisms $E: V \to V$ of $\mathbf{Map}(\mathbf{C}, \mathbf{D})$ with the property that all paths of the form $E^*: V \to V$, i.e. arbitrary repetitions of E, compose to E. Prove that natural transformations from the functor coinciding with $V_1 \xrightarrow{E_1} V_1$ to the functor coinciding with $V_2 \xrightarrow{E_2} V_2$ precisely coincide with morphisms $T: V_1 \to V_2$ of $\mathbf{Map}(\mathbf{C}, \mathbf{D})$ with the property that all paths of the form $E_1^*TE_2^*: V_1 \to V_2$ compose to T.