Assignment 7

Ross Tate

March 11, 2020

Exercise 1. Given a diagram $D: \mathbf{I} \rightarrow \mathbf{C}$ where \mathbf{I} has a terminal object 1 and \mathbf{C} has pullbacks, show that for every morphism $f: A \rightarrow D(1)$ there exists a diagram $D_{f}: \mathbf{I} \rightarrow \mathbf{C}$ and a collection of morphisms $\left\{f_{i}: D_{f}(i) \rightarrow D(i)\right\}_{i \in \mathbf{I}}$ such that f_{1} equals f and for every morphism $m: i \rightarrow j$ in \mathbf{I} the following is a pullback:

To save a step in the proof, utilize Proposition 11.10(2) of Abstract and Concrete Categories.
Remark. The above process can in particular be used to construct the pullback of any finite cocone. Thus, just like there is a notion of pullback stability for classes of morphisms, there is also a notion of pullback stability for classes of cocones.

Definition. A pair of morphisms $p_{1}, p_{2}: R \rightarrow A$ are a kernel pair if there exists a morphism $f: A \rightarrow B$ such that the following is a pullback:

Definition. A triple $\left\langle p_{1}: R \rightarrow A, p_{2}: R \rightarrow A, c: A \rightarrow B\right\rangle$ is an exact sequence when $\left\langle p_{1}, p_{2}\right\rangle$ is a kernal pair and c is a coequalizer of $\left\langle p_{1}, p_{2}\right\rangle$.

Exercise 2. Show that for any coequalizer c of any kernel pair $\left\langle p_{1}, p_{2}\right\rangle$, the following is a pullback

In other words, $\left\langle p_{1}, p_{2}\right\rangle$ is specifically a kernel pair of c.
Exercise 3. Show that the underlying functor of $\mathbf{A l g}(2)$ reflects coequalizers, meaning that if $|c|$ is a coequalizer of $\left|f_{1}\right|$ and $\left|f_{2}\right|$ in Set then c is a coequalizer of f_{1} and f_{2} in $\operatorname{Alg}(2)$.

Exercise 4. Without using quotient types or sets of equivalence classes, show that every kernel pair in $\operatorname{Alg}(2)$ has a coequalizer and, using this construction, that the underlying functor of $\mathbf{A l g}(2)$ preserves exact sequences.

Definition. A category is regular if and only if it is a finitely complete category such that exact sequences are pullback stable and every kernel pair has a coequalizer (i.e. is part of some exact sequence).

Exercise 5. Show that $\mathbf{A l g}(2)$ is a regular category (understanding that we have already proven in class that $\mathbf{A l g}(2)$ is finitely complete). Hint: take advantage of the fact that Set is regular.

