Assignment 6

Ross Tate

March 5, 2020

Exercise 1. Show that **Cat** is a concrete subcategory of some Alg(T) over **Grph**, meaning there is a functor I from **Cat** to some Alg(T) that is injective on objects/morphisms and is concrete over **Grph**.

Definition. An object A of a concrete category $\mathbf{A} \xrightarrow{U} \mathbf{B}$ is indiscrete if for every **X**-morphism $f: UA \to UB$ there exists a (necessarily unique) **A**-morphism $m: A \to B$ such that f = Um.

Exercise 2. Show that a concrete category $\mathbf{A} \xrightarrow{U} \mathbf{X}$ has cofree objects if for every **X**-object X there exists an indiscrete object in the fibre over X.

Definition. A category is "powered" if for every set I there is a function on objects $I \pitchfork -$ and a bijective mapping from collections of morphisms $\{m_i : B \to C\}_{i \in I}$ to morphisms $\pitchfork_{i \in I} m_i : B \to I \pitchfork C$ such that for every morphism $f : A \to B$ the equality $\pitchfork_{i \in I} (f; m_i) = f$; $\pitchfork_{i \in I} m_i$ holds. Because \pitchfork is bijective (on morphisms), for a morphism $m : B \to I \pitchfork C$ let $\{\pitchfork_i^{-1} m : B \to C\}_{i \in I}$ denote the collection of morphisms that \pitchfork maps to m.

Exercise 3. Show that every category with small (i.e. set-indexed) products is powered.