Assignment 5

Ross Tate

February 24, 2020

Definition. The category **Set** × **Set** has pairs of sets $\langle A, B \rangle$ as its objects, and has pairs of functions $\langle f : A \to A', g : B \to B' \rangle$ as its morphisms from $\langle A, B \rangle$ to $\langle A', B' \rangle$. The identity morphism on $\langle A, B \rangle$ is the pair of functions $\langle id_A, id_B \rangle$. The composition $\langle f, g \rangle$; $\langle f', g' \rangle$ is the pair of functions $\langle f, g \rangle$; $\langle f', g' \rangle$ is the pair of functions $\langle f, g \rangle$.

Exercise 1. Show that the function on objects mapping a pair of sets $\langle A, B \rangle$ to the set of pairs $A \times B$ extends to a functor from $\mathbf{Set} \times \mathbf{Set}$ to \mathbf{Set} . This functor is often denoted $\mathbf{Set} \times \mathbf{Set} \xrightarrow{\times} \mathbf{Set}$.

Exercise 2. Show that $\mathbf{Set} \times \mathbf{Set} \xrightarrow{\times} \mathbf{Set}$ is neither full nor faithful.

Exercise 3. Show that there is a concrete functor (over **Set**) from **Set** to **Rel**(2) that is finer than all other such concrete functors.