Weighted Limits and Colimits

Ross Tate
March 28, 2018

Definition (Comma Object). Given 1-cells $A_1 \xrightarrow{f_1} B \xleftarrow{f_2} A_2$ of a 2-category, a comma object from f_1 to f_2 is a 0-cell, typically denoted $f_1 \downarrow f_2$, along with 1- and 2-cells as in the following diagram

\[
\begin{array}{c}
\pi_2 & \xrightarrow{f_2} & A_2 \\
\downarrow & & \downarrow \\
\pi_1 & \xrightarrow{f_1} & A_1 \\
\end{array}
\]

\[
\begin{array}{c}
p_2 & \xrightarrow{A_2} & \xrightarrow{f_2} B \\
\downarrow & & \downarrow \\
p_1 & \xrightarrow{A_1} & \xrightarrow{f_1} B \\
\end{array}
\]

that is *universal* in the sense that given any other diagram $C \xleftarrow{\alpha} B$ there exists a unique 1-cell $\langle \alpha \rangle : C \rightarrow f_1 \downarrow f_2$ such that $\langle \alpha \rangle \ast \pi_1$ equals α (and $\langle \alpha \rangle ; \pi_1$ equals p_1 and $\langle \alpha \rangle ; \pi_2$ equals p_2).

Example. Comma categories are the comma objects of Cat.

Definition (Ccomma Object). Given 1-cells $B_1 \xleftarrow{f_1} A \xrightarrow{f_2} B_2$ of a 2-category, a cocomma object from f_1 to f_2 is a 0-cell, typically denoted $f_1 \uparrow f_2$, along with 1- and 2-cells as in the following diagram

\[
\begin{array}{c}
f_2 & \xrightarrow{B_2} & \xleftarrow{\kappa_2} B_2 \\
\downarrow & & \downarrow \\
f_1 & \xrightarrow{B_1} & \xleftarrow{\kappa_1} B_1 \\
\end{array}
\]

\[
\begin{array}{c}
f_2 \uparrow B_2 & \xrightarrow{c_2} C \xleftarrow{f_1 \uparrow f_2} B_1 \\
\downarrow & & \downarrow \\
f_1 & \xleftarrow{f_1} & \xleftarrow{\kappa_1} B_1 \\
\end{array}
\]

that is *universal* in the sense that given any other diagram $A \xrightarrow{\alpha} C$ there exists a unique 1-cell $\langle \alpha \rangle : f_1 \uparrow f_2 \rightarrow C$ such that $\kappa_1 \ast [\alpha]$ equals α (and $\kappa_1 ; [\alpha]$ equals c_1 and $\kappa_2 ; [\alpha]$ equals c_2).

Example. For the 1-source $1 \xleftarrow{a} A \xrightarrow{id} A$ in Prost, the corresponding cocomma object $! \uparrow A$ is the set $\text{Option}(A)$ with none being smaller than some(a) for all $a \in A$. On the flipside, the cocomma object $A \uparrow !$ is the set $\text{Option}(A)$ with none being larger than some(a) for all $a \in A$. In both cases, some(a) is less than some(a') iff a is less than a'.

Note that $L(A)$ in Set can be defined as the fixpoint $\mu X.1 + (A \times X)$. In Prost, the fixpoints $\mu X.1 + (A \times X)$, $\mu X.!(A \times X)$, and $\mu X.(A \times X) \uparrow !$ all correspond to lists but with different orderings. In the first, $\ell \leq \ell'$ can only hold if ℓ and ℓ' have the same length, whereas in the second ℓ can be a prefix of ℓ', and in the third ℓ' can be a prefix of ℓ. In particular, they all agree on lists with the same length, in which case they use componentwise comparison; where they differ is how they handle lists of differing length.

Definition (Inserter Object). Given two 1-cells $f_1, f_2 : A \rightarrow B$ of a 2-category, an inserter from f_1 to f_2 is a 0-cell, typically denoted $\text{Ins}(f_1, f_2)$, along with 1-cell $\pi : \text{Ins}(f_1, f_2) \rightarrow A$ and 2-cell $\pi_\text{Ins} : \pi ; f_1 \Rightarrow \pi ; f_2 : \text{Ins}(f_1, f_2) \rightarrow B$ that is *universal*, meaning given any other 0-cell C with 1-cell $f : C \rightarrow A$ and 2-cell $\alpha : f ; f_1 \Rightarrow f ; f_2 : C \rightarrow B$ there exists a unique 1-cell $\langle \alpha \rangle : C \rightarrow \text{Ins}(f_1, f_2)$ such that $\langle \alpha \rangle ; \pi$ equals f and $\langle \alpha \rangle \ast \pi_\text{Ins}$ equals α.

Example. Given an endofunctor $T : C \rightarrow C$, the category $\text{Alg}(T)$ is the inserter from T to Id_C, and the category $\text{Coalg}(T)$ is the inserter from Id_C to T.

Definition (Coinserter Object). Given two 1-cells \(f_1, f_2 : A \to B \) of a 2-category, a coinserter from \(f_1 \) to \(f_2 \) is a 0-cell, \(\text{Coins}(f_1, f_2) \), along with 1-cell \(\kappa : B \to \text{Coins}(f_1, f_2) \) and 2-cell \(\kappa_{\text{Coins}} : f_1 \Rightarrow f_2 ; \kappa : A \to \text{Coins}(f_1, f_2) \) that is (co)universal, meaning given any other 0-cell \(C \) with 1-cell \(f : B \to C \) and 2-cell \(\alpha : f_1 ; f \Rightarrow f_2 ; f : A \to C \) there exists a unique 1-cell \([\alpha] : \text{Coins}(f_1, f_2) \to C \) such that \(\kappa ; [\alpha] \) equals \(f \) and \(\kappa_{\text{Coins}} \ast [\alpha] \) equals \(\alpha \).

Definition (Weighted Limit). Let \(I \) be a 2-category conceptually describing a scheme, and let \(D : I \to C \) be a 2-functor conceptually describing a diagram of scheme \(I \) in the 2-category \(C \). Furthermore, let \(W : I \to \text{Cat} \) be a 2-functor conceptually describing a weighting of the diagram. A \(W \)-weighted cone of the diagram \(D \), denoted \(\text{lim} W D \), is a 0-cell \(L \) of \(C \) and a collection of 1-cells \(\{ \pi_w : L \to D I \}_{w \in W I} \) and 2-cells \(\{ \pi_w \ast \omega : \pi_w ; \omega \Rightarrow \pi_w ; \omega' \}_{w \in W I} \) that preserves identities and compositions, meaning \(\pi_{id_w} = id_{\pi_w} \) and \(\pi_{w ; \omega} = \pi_w ; \pi_{\omega'} \), and is natural, meaning for all 1-cells \(i : I \to I' \in I \) each appropriate 1-cell \(\pi_{W(i)} \) equals \(\pi_w \ast Di \) and for all 2-cells \(\iota : i \Rightarrow i' \in I \) each appropriate 2-cell \(\pi_{W(i)} \) equals \(\pi_w \ast Di \). A \(W \)-weighted limit of a diagram \(D \) is a universal \(W \)-weighted cone of \(D \).

Example. An inserter is a weighted limit as illustrated below:

\[
\begin{array}{c}
\begin{array}{c}
\text{I} \\
\bullet \\
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{C} \\
A \\
\begin{array}{c}
f_1 \\
f_2 \\
B
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{Cat} \\
* \\
\begin{array}{c}
\cdots \to 1 \\
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{Ins}(f_1, f_2) \\
\pi_1 = \pi_* : f_1 \\
\pi_2 = \pi_* : f_2
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\pi_{\text{Ins}} \\
\end{array}
\end{array}
\end{array}
\end{array}
\]

Example. A comma object is a weighted limit. The scheme is \(\bullet \to \bullet \leftarrow \bullet \) and the weighting is \(1 \to \left(1 \to 2 \right) \leftarrow 2 \).

Definition. A weighted colimit is dual to a weighted limit: given a diagram \(D : I \to C \) and weighting \(W : I^{\text{op}} \to \text{Cat} \) (the reason that \(W \) is contravariant here is complicated and very meta), a weighted colimit \(\text{colim}_W D \) in \(C \) is a weighted limit \(\text{lim}_{W^{\text{op}}} D^{\text{op}} \) in \(C^{\text{op}} \).

Example. Coinserter and cocomma objects are weighted colimits of the same weighting but on the opposite scheme as for inserter and comma objects.