Tensors and Exponentials ## Ross Tate ## April 21, 2018 **Definition** (Left Exponential). Given two objects A and B of a multicategory, an object E along with a multimorphism $e:[A,E]\to B$ is a left exponential of A and B if for every multimorphism $f:[A]+C\to B$ there exists a unique multimorphism $f':C\to E$ with the property that $\Delta_{id_A,f'}e$ equals f. Remark. Left exponentials are essentially unique, and as such E is often denoted as $A \multimap B$ and e as $eval_{A,B} : [A, A \multimap B] \to B$. The uniquely induced multimorphism for f is often denoted λf . **Definition** (Right Exponential). Given two objects A and B of a multicategory, an object E along with a multimorphism $e:[E,A]\to B$ is a right exponential of A and B if for every multimorphism $f:\vec{C}+[A]\to B$ there exists a unique multimorphism $f':\vec{C}\to E$ with the property that $\Delta_{f',id_A}e$ equals f. Remark. Right exponentials are essentially unique, and as such E is often denoted as $B \hookrightarrow A$ and e sometimes as $\mathsf{lave}_{A,B} : [B \hookrightarrow A, A] \to B$. The uniquely induced multimorphism for f is sometimes denoted kf. **Definition** (Left-Closed, Right-Closed, and Biclosed). A multicategory \mathbf{C} is left-closed if every pair of objects has a left exponential. A multicategory \mathbf{C} is right-closed if every pair of objects has a right exponential. A multicategory \mathbf{C} is biclosed if it is both left-closed and right-closed. In this case, $A \multimap (C \multimap B)$ is canonically isomorphic to $(A \multimap C) \multimap B$, and so the notation $A \multimap C \multimap B$ is often used. **Definition** (Tensor). Given a list of objects \vec{B} of a multicategory, an object T along with a morphism $t: \vec{B} \to T$ is a tensor of \vec{B} if for every multimorphism $f: \vec{A} + \vec{B} + \vec{C} \to D$ there exists a unique morphism $f': \vec{A} + [T] + \vec{C} \to D$ with the property that $\Delta_{\overrightarrow{id}A}, \overrightarrow{t,idc}, f'$ equals f. Remark. Tensors are essentially unique. As such, when \vec{B} is empty, T is often denoted as I. When \vec{B} is a singleton list [B], T is necessarily isomorphic to B. When \vec{B} contains more than one object B_1, \ldots, B_n, T is often denoted as $B_1 \otimes \cdots \otimes B_n$. In all cases, t is sometimes denoted as $\mathsf{tuple}_{B_1,\ldots,B_n}$, and the multimorphism uniquely induced from f is sometimes denoted as $\mathsf{split}_{\vec{A}:\vec{B}:\vec{C}}f$. One can also extend \otimes into an operation on lists of unary multimorphisms $f_1:[A_1]\to B_1,\ldots,f_n:[A_n]\to B_n$. The multimorphism denoted $f_1\otimes\cdots\otimes f_n:[A_1\otimes\cdots\otimes A_n]\to(B_1\otimes\cdots\otimes B_n)$ is defined as $$\mathsf{split}_{\varnothing;A_1,...,A_n;\varnothing} \bigwedge_{f_1,...,f_n} \mathsf{tuple}_{B_1,...,B_n}$$ **Definition** (Representable). A multicategory is representable if every list of objects has a tensor. **Definition** (Strong Coproduct). Given an *I*-indexed collection of objects $\{B_i\}_{i\in I}$, an object B along with an I-indexed collection of multimorphisms $\{k_i: [B_i] \to B\}$ is a strong coproduct of $\{B_i\}_{i\in I}$ if for every I-indexed collection of multimorphisms $\{f_i: \vec{A} + [B_i] + \vec{C} \to D\}$ there exists a unique morphism $f: \vec{A} + [B] + \vec{C} \to D$ with the property that $\Delta_{\overrightarrow{id_A}, k_i, \overrightarrow{id_C}} f$ equals f_i for all i in I. Remark. Strong coproducts are essentially unique and are often denoted in the same manner as coproducts since every strong coproduct is necessarily a coproduct. Sometimes, though, the notation \oplus is specifically used to distinguish strong coproducts from coproducts, in which case sometimes \bot is used to denote the empty strong coproduct. Note that what makes a coproduct "strong" is the ability to tolerate additional left and right contexts \vec{A} and \vec{C} . More generally, strong colimits are colimits with this additional ability. Remark. Products need no such similar "strong" variant. Sometimes, though, products in multicategories are denoted with \Re and \top rather than \times and 1, with the latter reserved for only when products and tensors coincide. **Definition** (Representable Cartesian Multicategory). A representable cartesian multicategory is a representable multicategory in which an object is a tensor object of a list of objects if and only if it is a product object of that list of objects. **Definition** (Skewed Operad). A skewed operad is an operad **P** with the following additional components: Skew Codomain For every multimorphism p, a natural number $c(p) \in \mathbb{N}$ such that $$c(id) = 1 \qquad \text{and} \qquad c\left(\bigwedge_{p_1, \dots, p_n} p' \right) = \sum_{i \in \{1, \dots, c(p')\}} c(p_{\sigma_{p'}(i)})$$ **Skew Identity** For every natural number n, an n-ary multimorphism sid_n such that $c(sid_n)$ equals n **Skew Composition** For every *n*-ary multimorphism p and c(p)-ary multimorphism p', an *n*-ary multimorphism p:p' such that c(p:p') equals c(p') **Skew-Identity Interchange** id equals sid_1 , and $\Delta_{sid_{m_1},...,sid_{m_n}} sid_n$ equals $sid_{m_1+...+m_n}$ Skew-Composition Interchange $$\Delta_{p_1;p'_1,\dots,p_n;p'_n} p_0; p'_0 \text{ equals } \left(\Delta_{p_1,\dots,p_n} p_0\right); \left(\Delta_{p'_{\sigma_{p_0}(1)},\dots,p'_{\sigma_{p_0}(c(p_0))}} p'_0\right)$$ **Example. Cart** is the skewed operad whose components are as follows: **Multimorphisms** A multimorphism is a triple $(n \in \mathbb{N}, m \in \mathbb{N}, \sigma : \{1, \dots, m\} \to \{1, \dots, n\})$ **Arity** The arity of $\langle n, m, \sigma \rangle$ is n **Identity** id is $\langle 1, 1, \lambda i \in \{1\}. i \rangle$ Composition $\triangle_{\langle n_1, m_1, \sigma_1 \rangle, \dots, \langle n_n, m_n, \sigma_n \rangle} \langle n, m, \sigma \rangle$ is $\left\langle \sum_{i \in \{1, \dots, n\}} n_i, \sum_{i \in \{1, \dots, m\}} m_{\sigma(i)}, \triangle_{\sigma_1, \dots, \sigma_n} \sigma \right\rangle$ where $$\left(\Delta_{\sigma_1, \dots, \sigma_n} \, \sigma \right) \left(i \in \left\{ 1, \dots, \sum_{i \in \{1, \dots, m\}} m_{\sigma(i)} \right\} \right) = \sigma_{\sigma(j)}(k) + \sum_{i \in \{1, \dots, \sigma(j) - 1\}} n_i$$ where $j \in \{1, \dots, m\}, \quad k \in \{1, \dots, m_{\sigma(j)}\}, \quad i = k + \sum_{i \in \{1, \dots, j - 1\}} m_{\sigma(i)}$ Skew Codomain $c(\langle n, m, \sigma \rangle)$ is m **Skew Identity** sid_n is $\langle n, n, \lambda i \in \{1, ..., n\}. i \rangle$ **Skew Composition** $\langle n, m, \sigma \rangle$; $\langle m, k, \sigma' \rangle$ is $\langle n, k, \lambda i \in \{1, \dots, k\} . \sigma(\sigma'(i)) \rangle$ **Definition** (Skewed Multifunctor). A skewed multifunctor between skewed operad is a multifunctor that preserves skew codomains, skew identities, and skew compositions. **Example. Sym** is the sub-skewed-operad of **Cart** comprised of the morphisms $\langle n, m, \sigma \rangle$ in which m equals n and σ is a bijection. **Definition** (Reindexable Multicategory). Given a skewed operad **P** with a skewed multifunctor $\sigma: \mathbf{P} \to \mathbf{Cart}$, a σ -reindexable multicategory is a multicategory **C** along with, for every n-ary multimorphism p of **P** and every list of objects $[A_1, \ldots, A_n]$ of **C**, an assignment of each multimorphism $f: [A_{\sigma_p(1)}, \ldots, A_{\sigma_p(c(p))}] \to B$ of **C** to a "reindexed" multimorphism $\theta_p(f): [A_1, \ldots, A_n] \to B$ of **C** such that the following properties hold: $$\forall \ldots f = \theta_{(vid_n)}(f)$$ $\forall \ldots \theta_p(\theta_{p'}(f)) = \theta_{(p;p')}(f)$ $$\forall \dots \sum_{\theta_{p_1}(f_1),\dots,\theta_{p_n}(f_n)} \theta_{p'}(f') = \theta_{\left(\triangle_{p_1,\dots,p_n} p' \right)} \left(\sum_{f_{\sigma_{p'}(1)},\dots,f_{\sigma_{p'}(c(p'))}} f' \right)$$ **Definition** (Cartesian Multicategory). A cartesian multicategory is a multicategory reindexable along the identity skewed multifunctor on **Cart**. **Definition** (Symmetric Multicategory). A symmetric multicategory is a multicategory reindexable along the inclusion skewed multifunctor from **Sym** to **Cart**. Remark. Note that these new definitions provide another definition for representable cartesian multicategory. In fact, this new definition is equivalent to the one given before. In particular, in a cartesian multicategory, all tensors are necessary products, and in a representable multicategory, if all tensors are products then the multicategory can be given a cartesian structure, and these two constructions are inverses of each other.