Definition (Monad). A monad in a given 2-category is comprised of the following:

- 0-cell C
- 1-cell $m : C \to C$ (generally referred to as the monad)
- 2-cells $\eta : id_C \Rightarrow m : C \Rightarrow C$ (called the unit) and $\mu : m ; m \Rightarrow m : C \to C$ (called the join)
- such that the following identity and associativity laws hold:

\[
\begin{align*}
\eta \circ m &= \eta \\
(m \circ m) \circ m &= m \circ (m \circ m)
\end{align*}
\]

Remark. In terms of string diagrams, the identity and associative laws are formulated as follows:

Remark. Given a 2-category, one can construct a multicategory whose objects are the 1-cells of the multicategory and whose morphisms are 2-cells from the composition of the inputs to the output. A monad is an internal monoid of that multicategory.

Theorem. For any monad $\langle C, m, \eta, \mu \rangle$ and $n : \mathbb{N}$, all 2-cells from m^n to m built from η, μ, and identities are equal.
Example. The functor \(0 \) serves as a basis for a monad on \(\text{Set} \) in the 2-category \(\text{Set} \). The unit is \(\text{some} \), and the join \(\mu_A : \text{O}(0(A)) \to \text{O}(A) \) maps \(\text{some} (\text{some}(a)) \) to \(\text{some}(a) \) and maps \(\text{some}(\text{none}) \) and \(\text{none} \) to \(\text{none} \).

Example. \((\text{Set}, \text{L}, \text{singleton}, \text{flatten})\) is a monad in \(\text{Cat} \). Similarly, \((\text{Set}, \text{P}, \lambda x. \{x\}, \cup)\) is also a monad in \(\text{Set} \).

There is also a monad for the functor \(\text{L} : \text{Set} \to \text{Set} \) that maps sets \(A \) to the set of finite multisets/bags of \(A \), i.e. finite collections of \(A \) elements in which duplicates matter but order does not. And there is a monad for the functor \(\text{F} : \text{Set} \to \text{Set} \) that maps \(A \) to the set of finite subsets of \(A \).

Example. Given a set \(C \), the functor \(C \to : \text{Set} \to \text{Set} \) is a monad. The unit is the natural transformation mapping \(a \in A \) to \((\lambda c \in C. a) \in C \to A \). The join is the natural transformation mapping \(f \in C \to (C \to A) \) to \((\lambda e \in C. f(e)(e)) \in C \to A \).

Example. Given a set \(S \), the functor \(S \to S \times \cdots : \text{Set} \to \text{Set} \) is a monad. The unit is the natural transformation mapping \(a \in A \) to \((\lambda s \in S. (s, a)) \in S \to S \times A \). The join is the natural transformation mapping \(f \in S \to (S \times (S \to S \times A)) \) to \((\lambda s. \pi_2(f(s))((\pi_1(f(s)))) \in S \to S \times A \).

Example. Given a monoid \(\langle M, e, * \rangle\), the functor \(M \times : \text{Set} \to \text{Set} \) is a monad. The unit is the natural transformation mapping \(a \in A \) to \((e, a) \in M \times A \). The join is the natural transformation mapping \(\langle m, \langle m', a \rangle \rangle \in M \times (M \times A) \) to \(\langle m * m', a \rangle \in M \times A \).

Example. Given a graph \(\langle V, E, s, t \rangle \) one can define the set of paths as alternating lists of vertices and edges \((v_0, e_0, v_1, e_1, \ldots, v_n) \) with the property that \(s(e_i) = v_i \) and \(t(e_i) = v_{i+1} \) for all indices \(i \). The source of such a path is \(v_0 \) and the target is \(v_n \). Thus we have a graph \(\langle V, \text{Path}(E), s_{\text{Path}}, t_{\text{Path}} \rangle \). This Path construction extends to a monad. For both the unit and join, the function on vertices on simply the identity. As for edges, the unit maps an edge \(e \) to the path \((s(e), e, t(e)) \), and the join essentially flattens paths of paths.

Definition (Monad Morphism). An (oplax) monad morphism from \(\langle C_1, m_1, \eta_1, \mu_1 \rangle \) to \(\langle C_2, m_2, \eta_2, \mu_2 \rangle \) is a 1-cell \(f : C_1 \to C_2 \) and a 2-cell \(\alpha : m_1 ; f \Rightarrow f ; m_2 \) such that

\[
\begin{align*}
\text{C}_2 & \xrightarrow{m_2} \text{C}_2 \\
\text{C}_1 & \xrightarrow{m_1} \text{C}_1
\end{align*}
\]

\[\alpha\]

\[
\begin{align*}
\text{C}_1 & \xrightarrow{\eta_1} \text{C}_1 \\
\text{C}_2 & \xrightarrow{\eta_2} \text{C}_2
\end{align*}
\]

\[f = f\]

\[
\begin{align*}
\text{C}_1 & \xrightarrow{\mu_1} \text{C}_1 \\
\text{C}_2 & \xrightarrow{\mu_2} \text{C}_2
\end{align*}
\]

\[f = f\]

\[
\begin{align*}
\text{C}_1 & \xrightarrow{f} \text{C}_2 \\
\text{C}_1 & \xrightarrow{f} \text{C}_2
\end{align*}
\]

\[f\] and \[f\]

Example. The obvious natural transformations from \(\text{L} \) to \(\text{F} \) to \(\text{P} \) are all monad morphisms where the 1-cell \(f \) is the identity functor of \(\text{Set} \).

Example. The functor \(\pi_E : \text{Graph} \to \text{Set} \) has the property that \(\text{Path} ; \pi_E \) equals \(\pi_E ; \text{L} \). This 1-cell \(\pi_E \) in fact forms a monad morphism from \(\text{Path} \) to \(\text{L} \) where the 2-cell is the identity 2-cell.

Definition (Comonad). A comonad in a 2-category is a 0-cell \(C \), a 1-cell \(c : C \to C \) (typically called the comonad), and 2-cells \(\varepsilon : m \Rightarrow id_C \) (often called the counit) and \(\delta : m \Rightarrow m ; m \) (often called the cojoin or comultiplication) satisfying equalities dual to the identity and associativity laws of monads.

Example. Given any set \(C \), the functor \(C \times : \text{Set} \to \text{Set} \) is a comonad on \(\text{Set} \) in \(\text{Cat} \). The counit is the natural transformation mapping \(\langle c, a \rangle \in C \times A \) to \(a \in A \). The cojoin is the natural transformation mapping \(\langle c, \langle c, a \rangle \rangle \in C \times (C \times A) \) to \(\langle c, a \rangle \in C \times C \times A \).

Example. Given a monoid \(\langle M, e, * \rangle \), the functor \(M \to : \text{Set} \to \text{Set} \) is a comonad. The counit is the natural transformation mapping \(f \in M \to A \) to \(f(e) \in A \). The cojoin is the natural transformation mapping \(f \in M \to A \) to \(\lambda m \in M. \lambda m' \in M. s(m * m') \in M \to (M \to A) \). When the monoid is \(\langle N, 0, + \rangle \), this is known as the stream comonad.

Definition (Comonad Morphism). Just as a comonad in a 2-category \(C \) coincides with a monad in \(C^{co} \), a comonad morphism in \(C \) coincides with a monad morphism in \(C^{co} \).