Monad Algebras

Ross Tate

April 11, 2018

Definition (Monad Algebra). A monad algebra of a Cat-monad \(\langle M : C \to C, \eta, \mu \rangle \), also known as an Eilenberg-Moore algebra, is an object \(A \) of \(C \) along with a morphism \(a : MA \to A \) such that the following both commute:

\[
\begin{array}{ccc}
\eta_A & MA & a \\
\downarrow & \downarrow & \downarrow \\
A & A & id_A \\
\end{array}
\quad \text{and} \quad
\begin{array}{ccc}
\mu_A & MA & a \\
\downarrow & \downarrow & \downarrow \\
MMA & A & Ma \\
\end{array}
\]

Example. The monad algebras for \(L \) coincide with monoids. The monad algebras for \(M \) coincide with commutative monoids. The monad algebras for \(F \) coincide with idempotent (meaning \(\forall x. x * x = x \) commutative monoids. The monad algebras for \(P \) coincide with partial orders with arbitrary joins (by defining \(x \leq x' \) as \(a(\{x, x'\}) = x' \)).

Definition (Eilenberg-Moore Category). The Eilenberg-Moore category of a monad \(\langle M : C \to C, \eta, \mu \rangle \), often denoted \(CM \), is the full subcategory of \(\text{Alg}(M) \) comprised of the \(M \)-algebras satisfying the requirements of monad algebras of \(\langle M, \eta, \mu \rangle \). Note that \(CM \) can be viewed as a concrete category over \(C \).

Example. The category \(\text{Set}^L \) is concretely isomorphic to \(\text{Mon} \). The category \(\text{Set}^M \) is concretely isomorphic to \(\text{CommMon} \). The category \(\text{Set}^P \) is concretely isomorphic to \(\text{JCPos} \).

Example. The category \(\text{Graph}^\text{Path} \) is concretely isomorphic to \(\text{Cat} \).

Definition (Premodule of a Monad). Given a monad \(\langle m : C \to C, \eta, \mu \rangle \) of a 2-category \(C \), a premodule, also known as a left module, is a 0-cell \(L \) along with a 1-cell \(\ell : L \to C \) and a 2-cell \(\lambda : \ell ; m \Rightarrow \ell \) satisfying the following equalities:

\[
\begin{array}{ccc}
L & \ell & C \\
\lambda & \downarrow & \downarrow m \\
\lambda & \downarrow & \downarrow \eta \\
\ell & \downarrow & \downarrow \ell \\
L & \ell & L \\
\end{array}
\quad \text{and} \quad
\begin{array}{ccc}
L & \ell & \ell \\
\lambda & \downarrow & \downarrow \ell \\
C & \downarrow & \downarrow C \\
\ell & \downarrow & \downarrow \ell \\
L & \ell & L \\
\end{array}
\]

Remark. In terms of string diagrams, the above equalities are formulated as

\[
\begin{array}{ccc}
L & \ell & C \\
\lambda & \downarrow & \downarrow m \\
\lambda & \downarrow & \downarrow \eta \\
\ell & \downarrow & \downarrow \ell \\
L & \ell & L \\
\end{array}
\quad \text{and} \quad
\begin{array}{ccc}
L & \ell & \ell \\
\lambda & \downarrow & \downarrow \ell \\
C & \downarrow & \downarrow C \\
\ell & \downarrow & \downarrow \ell \\
L & \ell & L \\
\end{array}
\]

Example. A monad algebra for a Cat-monad is simply a premodule where \(L \) is \(1 \), \(\ell \) is \(A \), and \(\lambda \) is \(a \).

Example. Every monad \(\langle m : C \to C, \eta, \mu \rangle \) is a premodule of itself, with \(L \) as \(C \), \(\ell \) as \(m \), and \(\lambda \) as \(\mu \).

Example. For any Cat-monad \(\langle M : C \to C, \eta, \mu \rangle \), the category \(CM \) along with its underlying functor \(U : CM \to C \) and the canonical natural transformation \(\alpha : U ; M \Rightarrow U \) inherited from \(\text{Alg}(M) \) forms a premodule of \(\langle M, \eta, \mu \rangle \). In fact, it is the universal premodule of the monad \(\langle M, \eta, \mu \rangle \).

Definition (Eilenberg-Moore Object). An Eilenberg-Moore object \(C^m \) of a given monad \(\langle m : C \to C, \eta, \mu \rangle \) in a 2-category \(C \) is a universal premodule of that monad.

Remark. Because every monad is its own premodule, this implies there is a 1-cell \(f : C \to C^m \) (if \(C^m \) exists) such that \(f ; u \) equals \(m \). One can show that these 1-cells always form an adjunction \(f \dashv u \) that gives rise to the monad \(m \).
Definition (Lax Monad Algebra). A lax monad algebra of a 2-monad \(\langle M : C \to C, \eta, \mu \rangle \) is a 0-cell \(A \) of the 2-category \(C \) along with a 1-cell \(a : MA \to A \) and 2-cells given below such that the following identity and associativity laws hold:

\[
\begin{align*}
MMA & \xrightarrow{\mu_A} MA \\
Ma & \xrightarrow{\eta} A \\
Ma & \xrightarrow{id_A} MA
\end{align*}
\]

\[
\begin{align*}
MMA & \xrightarrow{\mu_A} MA \\
Ma & \xrightarrow{\eta} A \\
Ma & \xrightarrow{id_A} MA
\end{align*}
\]

\[
\begin{align*}
MMA & \xrightarrow{\mu_A} MA \\
Ma & \xrightarrow{\eta} A \\
Ma & \xrightarrow{id_A} MA
\end{align*}
\]

\[
\begin{align*}
MMA & \xrightarrow{\mu_A} MA \\
Ma & \xrightarrow{\eta} A \\
Ma & \xrightarrow{id_A} MA
\end{align*}
\]

Definition (Colax Monad Algebra). The definition of a colax monad algebra is the same as that of a lax monad algebra but with the 2-cells \(\iota \) and \(\gamma \) going in the reverse direction.

Definition (Weak Monad Algebra). A weak monad algebra is both a lax and a colax monad algebra in which the opposing \(\iota \)s and opposing \(\gamma \)s are inverses of each other. That is, a weak monad algebra is a lax or colax monad algebra in which \(\iota \) and \(\gamma \) have inverses.

Definition (Strict Monad Algebra). A strict monad algebra is both a lax and a colax monad algebra in which both the \(\iota \)s and the \(\gamma \)s are identities. That is, a strict monad algebra is a lax or colax monad algebra in which \(\iota \) and \(\gamma \) are both identities.

Definition (Lax Morphism of Lax Monad Algebras). A lax morphism from \(\langle A, a, \iota, \gamma \rangle \) to \(\langle B, b, \iota', \gamma' \rangle \) is a 1-cell \(f : A \to B \) along with a 2-cell \(\alpha : Mf \cdot b \Rightarrow a ; f \) (note the direction) satisfying the following equalities:

\[
\begin{align*}
\begin{align*}
Mf & \xrightarrow{\eta_A} MA \\
Mf & \xrightarrow{id_B} MB \\
f & \xrightarrow{id_A} A
\end{align*}
\end{align*}
\]

\[
\begin{align*}
\begin{align*}
Mf & \xrightarrow{\eta_A} MA \\
Mf & \xrightarrow{id_B} MB \\
f & \xrightarrow{id_A} A
\end{align*}
\end{align*}
\]

\[
\begin{align*}
\begin{align*}
Mf & \xrightarrow{\eta_A} MA \\
Mf & \xrightarrow{id_B} MB \\
f & \xrightarrow{id_A} A
\end{align*}
\end{align*}
\]

\[
\begin{align*}
\begin{align*}
Mf & \xrightarrow{\eta_A} MA \\
Mf & \xrightarrow{id_B} MB \\
f & \xrightarrow{id_A} A
\end{align*}
\end{align*}
\]

Definition. A transformation from \(\langle f, \alpha \rangle \) to \(\langle f', \alpha' \rangle \) is a 2-cell \(\theta : f \Rightarrow f' \) such that \(\alpha ; (a * \theta) = (M\theta * b) ; \alpha' \).