Definition. Given a functor \(T : X \to X \), the concrete category over \(X \) of \(T \)-coalgebras \(\text{Coalg}(T) \) is comprised of the following:

Objects An object \(\langle X, c \rangle \) is a pair of an (underlying) object \(X \) of \(X \) and an \(X \)-morphism \(c : X \to T(X) \).

Morphisms A morphism from \(\langle X, c \rangle \) to \(\langle X', c' \rangle \) is an (underlying) \(X \)-morphism \(f : X \to X' \) such that the following commutes:

\[
\begin{array}{ccc}
X & \xrightarrow{c} & T(X) \\
\downarrow{f} & & \downarrow{T(f)} \\
X' & \xrightarrow{c'} & T(X')
\end{array}
\]

Being a concrete category over \(X \), identity and composition are inherited from \(X \). Identities can easily be shown to make the square commute, and composition can easily be shown to preserve commutation of squares, so this is a well-defined category (concrete over \(X \)).

Example. Given a set \(\Sigma \), the function on sets \(\lambda X. X^{\Sigma} \times B \) extends to an endofunctor on \(\text{Set} \) by mapping a function \(f \) to the function \(\lambda(x, b). (\lambda \sigma. f(x(\sigma))), b \). A coalgebra of this functor is a set \(S \) and a function of the form \(S \to S^{\Sigma} \times B \). Note that such a function corresponds to a pair of functions \(S \to S^{\Sigma} \) and \(S \to B \). The former further corresponds to a function \(S \times \Sigma \to S \), and the latter corresponds to a (decidable) subset of \(S \). This a coalgebra of this functor is a set (of states) \(S \), a (transition) function \(\delta : S \times \Sigma \to S \), and a (decidable) subset of (accepting) states. In other words, an object of \(\text{Coalg}(\Sigma^{\times} \times B) \) is essentially a \(\Sigma \)-acceptor without an initial state, and a morphism of \(\text{Coalg}(\Sigma^{\times} \times B) \) is essentially a morphism of \(\Sigma \)-acceptors that preserves and reflects transitions and accepting states.

Example. Let \(\text{Fin} \) be the category of finite sets. An object of \(\text{Coalg}(\mathcal{P}(\cdot)^{\Sigma} \times B) \) (concrete over \(\text{Fin} \)) is a non-deterministic finite automaton without an initial state. A morphism of \(\text{Coalg}(\mathcal{P}(\cdot)^{\Sigma} \times B) \) (concrete over \(\text{Fin} \)) is a morphism of non-deterministic finite automata that preserves and reflects transitions and accepting states.

Example. Let \(B \) be an abstract symbol denoting “blank”, and let \(L \) and \(R \) be abstract symbols denoting “left” and “right”. An object of \(\text{Coalg}(\text{Option}(\cdot^{\times} \Sigma \times \{L, R\})^{\Sigma^{+}(B)}) \) (concrete over \(\text{Fin} \)) is a Turing machine without an initial state, and a morphism of \(\text{Coalg}(\text{Option}(\cdot^{\times} \Sigma \times \{L, R\})^{\Sigma^{+}(B)}) \) is a morphism of Turing machines that preserves and reflects transitions, outputs, movements, and haltings.