Exercise 1. Prove that the 2-category MULTICAT is powered. I am content if you can construct the power multicategory $E \triangleleft M$ and the necessary functor $E \to M_{\text{MULTICAT}}(E \triangleleft M, M)$ and show that any multicategory D with a functor $E \to M_{\text{MULTICAT}}(D, M)$ has a 1-cell from D to $E \triangleleft M$. The remaining requirements need to hold but do not need to be proved.

Proof. Let C_M be the category whose objects are the same as M and whose morphisms are the unary morphisms of M with the obvious identity and composition. Suppose F_1, \ldots, F_n and G are functors from E to C_M, then let a multitransformation α from \vec{F} to G map an object E of E to morphism of M from $[F_1(E), \ldots, F_n(E)]$ to $G(E)$, and let α be natural if for every morphism $e : E \to E'$ of E the composition $\alpha_{E'} : G(e)$ equals the composition $[F_1(e), \ldots, F_n(e)] : \alpha_{E'}$.

Define $E \triangleleft M$ to be the category whose objects are functors from E to C_M and whose morphisms are natural multitransformations with composition and identity each defined pointwise (which obviously always results in a natural multitransformation). Given an object E of E, let $\pi_E : E \triangleleft M \to M$ map the functor $F : E \to C_M$ to the object $F(E)$ and the multitransformation α to the morphism α_E, which defines a functor of multicategories because composition and identity in $E \triangleleft M$ are defined pointwise. Given a morphism $e : E \to E'$ of E, let $\pi_e : \pi_E \Rightarrow \pi_{E'}$ be the transformation mapping a functor $F : E \to C_M$ to the morphism $F(e) : [F(E)] \to F(E')$, which is natural due to the naturality requirement on the morphisms of $E \triangleleft M$. $\pi : E \to M_{\text{MULTICAT}}(E \triangleleft M, M)$ is functorial because each object of $E \triangleleft M$ is functorial.