Monoids

Ross Tate

September 5, 2014

Exercise 1. Given monoids \(A \) and \(B \), give a monoidal structure \(A \& B \) to the set \(A \times B \) such that the projection functions \(\pi_A \) and \(\pi_B \) are monoid homomorphisms from \(A \& B \) to \(A \) and \(B \) respectively.

Proof. Define \(\langle a_1, b_1 \rangle \ast \langle a_2, b_2 \rangle \) to be \(\langle a_1 \ast a_2, b_1 \ast b_2 \rangle \). This is associative because \(\ast \) is associative for both \(A \) and \(B \). Define \(e_{A \& B} \) to be \((e_A, e_B) \). This is an identity because \(e_A \) and \(e_B \) are identities for \(A \) and \(B \) respectively. \(\pi_A \) is a monoid homomorphism since \(\pi_A(\langle a_1 \ast a_2, b_1 \ast b_2 \rangle) = a_1 \ast a_2 \), preserving multiplication, and \(\pi_A((e_A, e_B)) = e_A \), preserving identity. Similarly for \(\pi_B \).

Exercise 2. Determine the monoid “\(\top \)" with the property that for every monoid \(A \) there is exactly one monoid homomorphism from \(A \) to \(\top \).

Proof. The underlying set is \(\top \), and multiplication and identity are the only functions with their respective signatures. Given two monoid homomorphisms from some monoid \(A \) to \(\top \), they must both map everything to the unique inhabitant of \(\top \), making them equal.

Exercise 3. Determine the monoid “\(0 \)" with the property that for every monoid \(A \) there is exactly one monoid homomorphism from \(0 \) to \(A \).

Proof. The underlying set is \(\top \), and multiplication and identity are the only functions with their respective signatures. Given two monoid homomorphisms from \(0 \) to some monoid \(A \), their only input is the identity of \(\top \) and so being monoid homomorphisms they must both map this only input to \(e_A \), making them equal.

Definition. Given monoids \(A \) and \(B \), define the equivalence relation \(\approx \) on \(L(A \times B) \) to be the least equivalence relation such that:

1. \(\forall m_1, m_1', m_2, m_2' : L(A \times B). m_1 \approx m_1' \land m_2 \approx m_2' \implies m_1 + m_2 \approx m_1' + m_2' \)
2. \(\forall b : B. [(e_A, b)] \approx [] \)
3. \(\forall a_1, a_2 : A, b : B. [\langle a_1, b \rangle, \langle a_2, b \rangle] \approx [\langle a_1 \ast a_2, b \rangle] \)
4. \(\forall a : A. [(a, e_B)] \approx [] \)
5. \(\forall a : A, b_1, b_2 : B. [\langle a, b_1 \rangle, \langle a, b_2 \rangle] \approx [\langle a, b_1 \ast b_2 \rangle] \)

We use requirement 1 to impose a monoidal structure \(A \otimes B \) on the quotient set \(\frac{L(A \times B)}{\approx} \):

<table>
<thead>
<tr>
<th>Operator</th>
<th>(\mathbf{++})</th>
<th>(= \lambda q_1, q_2. \text{select } \tilde{m}_1 \text{ from } q_1 \text{ in } (\text{select } \tilde{m}_2 \text{ from } q_2 \text{ in } \tilde{m}_1 \mathbf{++} \tilde{m}_2 \text{ using } \cdot) \text{ using } .)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associativity</td>
<td>Follows from associativity of (\mathbf{++}) and the fact that quotienting only makes things more equal</td>
<td></td>
</tr>
<tr>
<td>Identity Element</td>
<td>(= \frac{[]}{})</td>
<td></td>
</tr>
<tr>
<td>Identity</td>
<td>Follows from identity of [] and the fact that quotienting only makes things more equal</td>
<td></td>
</tr>
</tbody>
</table>

Exercise 4. Show that, for any monoid \(C \), there is a bijection between the set of multilinear homomorphisms from \(A \) and \(B \) to \(C \) and the set of monoid homomorphisms from \(A \otimes B \) to \(C \).

Proof. Given a function \(f : A \times B \to C \) that is a multilinear homomorphism from \(A \) and \(B \) to \(C \), define \(\hat{f} : L(A \times B) \to C \) to be \(\lambda \tilde{m}. \text{map}_f \tilde{m} \) where \(\text{map}_f \) is the function that takes a list and produces a new list by applying \(f \) to each element. \(\hat{f} \) is a monoid homomorphism:
\[
\hat{f}(\vec{m}_1 \leftrightarrow \vec{m}_2) = \Pi \text{map}_f(\vec{m}_1 \leftrightarrow \vec{m}_2) = \Pi(\text{map}_f \vec{m}_1 \leftrightarrow \text{map}_f \vec{m}_2) = (\Pi \text{map}_f \vec{m}_1) \ast (\Pi \text{map}_f \vec{m}_2) = \hat{f}(\vec{m}_1) \ast \hat{f}(\vec{m}_2)
\]

\[
\hat{f}(\vec{m}) = \Pi \text{map}_f[\vec{m}] = \Pi[\vec{m}] = e_C
\]

\(\hat{f}\) has the property that it maps related lists to equal elements (skipping the additional rules for equivalence relations below):

1. Given \(\vec{m}_1, \vec{m}_1', \vec{m}_2, \vec{m}_2' : L(A \times B)\) such that \(\vec{m}_1 \approx \vec{m}_1'\) and \(\vec{m}_2 \approx \vec{m}_2'\) hold, by induction on the proof of \(\approx\) we can assume \(\hat{f}(\vec{m}_1) = \hat{f}(\vec{m}_1')\) and \(\hat{f}(\vec{m}_2) = \hat{f}(\vec{m}_2')\). Then \(\hat{f}(\vec{m}_1 \leftrightarrow \vec{m}_2) = \hat{f}(\vec{m}_1') \ast \hat{f}(\vec{m}_2') = \hat{f}(\vec{m}_1' \leftrightarrow \vec{m}_2')\)

2. Given \(b : B\), \(\hat{f}([e_A, b]) = \Pi \text{map}_f([e_A, b]) = \Pi f(e_A, b) = f(e_A, b) = e_C\) = \(\Pi[\vec{m}] = \Pi \text{map}_f[\vec{m}] = \hat{f}([\vec{m}])\)

3. Given \(a_1, a_2 : A\) and \(b : B\), \(\hat{f}([a_1, b], [a_2, b]) = \Pi \text{map}_f([a_1, b], [a_2, b]) = \Pi f(a_1, b) \ast f(a_2, b) = f(a_1 \ast a_2, b) = \Pi f(a_1 \ast a_2, b) = \Pi \text{map}_f([a_1 \ast a_2, b]) = ([a_1 \ast a_2, b])\)

4. Given \(a : A\), \(\hat{f}([a, e_B]) = \Pi \text{map}_f([a, e_B]) = \Pi f(a, e_B) = f(a, e_B) = e_C\) = \(\Pi[\vec{m}] = \Pi \text{map}_f[\vec{m}] = \hat{f}([\vec{m}])\)

5. Given \(a : A\) and \(b_1, b_2 : B\), \(\hat{f}([a, b_1], [a, b_2]) = \Pi \text{map}_f([a, b_1], [a, b_2]) = \Pi f(a, b_1) \ast f(a, b_2) = f(a, b_1 \ast b_2) = \Pi f(a, b_1 \ast b_2) = \Pi \text{map}_f([a, b_1 \ast b_2]) = ([a, b_1 \ast b_2])\)

Consequently, we can define \(\tilde{f} : \frac{L(A \times B)}{\approx} \rightarrow C\) to be \(\lambda q. \text{select } \vec{m} \text{ from } q \text{ in } \Pi \text{map}_f \vec{m}\) using (proof above). This is a monoid homomorphism because \(\tilde{f}\) is a monoid homomorphism.

In the other direction, given a function \(g : \frac{L(A \times B)}{\approx} \rightarrow C\) that is a monoid homomorphism from \(A \otimes B\) to \(C\), define \(\tilde{g} : A \times B \rightarrow C\) to be \(\lambda (a, b). g([\langle a, b \rangle])\). \(\tilde{g}\) is a multilinear monoid homomorphism from \(A\) and \(B\) to \(C\) since related lists are in equal equivalence classes and \(g\) is a monoid homomorphism:

- Given \(b : B\), \(\tilde{g}(e_A, b) = g([\langle e_A, b \rangle]) = g([\frac{1}{e_A}]) = e_C\)
- Given \(a_1, a_2 : A\) and \(b : B\), \(\tilde{g}(a_1 \ast a_2, b) = g([\langle a_1 \ast a_2, b \rangle]) = g([\langle a_1, b \rangle \approx \langle a_2, b \rangle]) = g([\langle a_1, b \rangle]) \ast g([\langle a_2, b \rangle]) = \tilde{g}(a_1, b) \ast \tilde{g}(a_2, b)\)
- Given \(a : A\), \(\tilde{g}(a, e_B) = g([\langle a, e_B \rangle]) = g([\frac{1}{a}]) = e_C\)
- Given \(a : A\) and \(b_1, b_2 : B\), \(\tilde{g}(a, b_1 \ast b_2) = g([\langle a, b_1 \ast b_2 \rangle]) = g([\langle a, b_1 \rangle \approx \langle a, b_2 \rangle]) = g([\langle a, b_1 \rangle]) \ast g([\langle a, b_2 \rangle]) = \tilde{g}(a, b_1) \ast \tilde{g}(a, b_2)\)

Given a function \(f : A \times B \rightarrow C\) that is a multilinear homomorphism from \(A\) and \(B\) to \(C\), we have the following equality for all \(a : A\) and \(b : B\):

\[
\tilde{f}(a, b) = \hat{f}([\langle a, b \rangle]) = \text{select } \vec{m} \text{ from } [\langle a, b \rangle] \approx \text{ in } \Pi \text{map}_f \vec{m} \text{ using } = \Pi \text{map}_f([a, b]) = \Pi f(a, b) = f(a, b)
\]

In the other direction, given a function \(g : \frac{L(A \times B)}{\approx} \rightarrow C\) that is a monoid homomorphism from \(A \otimes B\) to \(C\), we have the following equality for all \(q : \frac{L(A \times B)}{\approx}\):

\[
g(q) = \text{select } \vec{m} \text{ from } q \text{ in } g([\frac{\vec{m}}{\approx}]\) using .
\[
= \text{select } \Sigma_\lambda([a_1, b_1]) \text{ from } q \text{ in } g([\frac{\Sigma_\lambda([a_1, b_1])}{\approx}]\) using .
\[
= \text{select } \Sigma_\lambda([a_1, b_1]) \text{ from } q \text{ in } \Pi \Sigma_\lambda g([\frac{[a_1, b_1]}{\approx}]\) using .
\[
= \text{select } \Sigma_\lambda([a_1, b_1]) \text{ from } q \text{ in } \Pi \text{map}_\lambda([a_1, b_1]) \Sigma_\lambda([a_1, b_1]) \) using .
\[
= \text{select } \vec{m} \text{ from } q \text{ in } \Pi \text{map}_\lambda([a_1, b_1]) \vec{m} \) using .
\[
= \text{select } \vec{m} \text{ from } q \text{ in } \Pi \text{map}_\lambda([a_1, b_1]) \vec{m} \) using .
\[
= g(q)
\]