Let \(\textbf{Fin} \) be the full subcategory of \(\textbf{Set} \) whose objects are the finite sets. Let \(F : \textbf{Fin} \to \textbf{Set} \) be the inclusion functor. Define \(\textbf{Dat} \) to be \(F \downarrow \textbf{Set} \). Let \(U : \textbf{Dat} \to \textbf{Set} \) be the right projection for the comma category.

The intuition is that \(\textbf{Dat} \) represents the category of databases. An object \(I \xrightarrow{d} X \) represents a database of \(X \) values; the \(I \) represents the finite set of entries, and \(d \) specifies the \(X \)-value of each entry. A morphism \(\langle i : I \to J, f : X \to Y, \cdot \rangle \) represents applying the computation \(f \) to each entry to get a corresponding entry in the target database, where the corresponding entry is specified by \(i \). In particular, if \(f \) is an identity function, then the function \(i \) shows that the entries of the source database are a subset of the entries of the target database.

Exercise 1. Prove that \(U \) is an opfibration.

Proof. Given an object \(I \xrightarrow{d} X \) and a function \(f : X \to Y \), let the lifting of \(Y \) be \(I \xrightarrow{d,f} Y \) and the lifting of \(f \) be \(\langle \text{id}, f, \cdot \rangle \). To prove \(\langle \text{id}, f, \cdot \rangle \) is opcartesian, suppose there is a morphism \(\langle i, f', \cdot \rangle : (I \xrightarrow{d} X) \to (I' \xrightarrow{d'} X') \) and a function \(g : Y \to X' \) such that \(f \circ g \) equals \(f' \). Then \(\langle i, g, \cdot \rangle \) is a lifting of \(g \) with the property that \(\langle \text{id}, f, \cdot \rangle ; \langle i, g, \cdot \rangle \) equals \(\langle i, f', \cdot \rangle \). For uniqueness, suppose \(\langle i', g', \cdot \rangle \) is also a lifting of \(g \) with the property that \(\langle \text{id}, f, \cdot \rangle ; \langle i', g', \cdot \rangle \) equals \(\langle i, f', \cdot \rangle \). To be a lifting of \(g \), \(g' \) must equal \(g \), and for the equality to hold, \(\text{id} : i' \) must equal \(i \), which implies \(i' \) equals \(i \). Thus, \(\langle i', g', \cdot \rangle \) equals \(\langle i, g, \cdot \rangle \). \(\square \)