Definition ((Biased) Semigroup). A tuple \(\langle S, \ast, a \rangle \) where the components have the following types:

Underlying Set \(S \): Type
Operator \(\ast: S \times S \to S \) (infix)
Associativity \(a: \forall s_1, s_2, s_3: S. (s_1 \ast s_2) \ast s_3 = s_1 \ast (s_2 \ast s_3) \)

Example. \(N_{\min} = \langle \mathbb{N}, \min, \cdot \rangle \) where \(\mathbb{N}_{\min} \) denotes nonempty (finite) lists of \(T \)
\((L_{\min})_{++} = \langle L_{\min}, +, +, \cdot \rangle \) where \(L_{\min} \) denotes nonempty multisets of \(T \)
\((S_{\min})_{\cup} = \langle S_{\min}, \cup, \cdot \rangle \) where \(S_{\min} \) denotes nonempty finite subsets of \(T \)
\((P_{\min})_{\cap} = \langle P_{\min}, \cap, \cdot \rangle \) where \(P_{\min} \) denotes nonempty subsets of \(T \)

Definition ((Biased) Group Homomorphism from \(\langle S, \ast, a \rangle \) to \(\langle T, +, i, -1, \cdot \rangle \)). A tuple \(\langle f, d, i, \cdot \rangle \) where the components have the following types:

Underlying Function \(f: S \to T \)
Distributivity \(\cdot: \forall s_1, s_2: S. f(s_1) + f(s_2) = f(s_1 \ast s_2) \)

Exercise 1. Prove that \(\text{Mon} \) is a non-full subcategory of \(\text{Sgr} \), the category of semigroups and semigroup homomorphisms (with the obvious composition and identity), via the obvious inclusion functor.

Definition ((Biased) Group). A tuple \(\langle G, *, e, \ast, i, -1, \cdot \rangle \) where the components have the following types:

Underlying Set \(G \): Type
Operator \(\ast: G \times G \to G \) (infix)
Associativity \(a: \forall g_1, g_2, g_3: G. (g_1 \ast g_2) \ast g_3 = g_1 \ast (g_2 \ast g_3) \)
Identity Element \(e: G \)
Identity \(i: \forall g: G. e \ast g = g = g \ast e \)
Inverse Operator \(-1: G \to G \) (postfix)
Inverse \(\cdot\): \(\forall g: G. g \ast g^{-1} = e = g^{-1} \ast g \)

Definition ((Biased) Group Homomorphism from \(\langle G, *, e, \ast, i, -1, \cdot \rangle \) to \(\langle H, +, i, -1, \cdot \rangle \)). A tuple \(\langle f, \cdot, i, \cdot \rangle \) where the components have the following types:
Underlying Function $f : G \to H$

Distributivity $\forall g_1, g_2 : G. f(g_1) + f(g_2) = f(g_1 \ast g_2)$

Identity $i : i = f(e)$

Inverse $\forall g : G. -f(g) = f(g^{-1})$

Exercise 2. Prove that \textbf{Grp}, the category of groups and group homomorphism (with the obvious composition and identity), is a full subcategory of \textbf{Mon}.

Definition (Reflection Arrow for $S \hookrightarrow I \hookrightarrow C$). An object C of C and object R of S with a morphism $C \xrightarrow{C} I(R)$ of C such that for every object S of S with a morphism $C \xrightarrow{m} I(S)$ of C there exists a unique morphism $R \xrightarrow{m} S$ of S with $r; I(m^\sim) = m$.

Exercise 3. Prove that, for $\textbf{Grp} \hookrightarrow \textbf{Mon}$, the identity on a monoid is a reflection arrow if and only if that monoid is a group.

Exercise 4. Prove that, for $\textbf{Mon} \hookrightarrow \textbf{Sgr}$, the identity on a semigroup is never a reflection arrow even if that semigroup is a monoid.

Definition (Reflective Subcategory). A subcategory $S \hookrightarrow I \hookrightarrow C$ with a reflection arrow $C \xrightarrow{C} I(R)$ for every object C of C.

Exercise 5. Prove that \textbf{Grp} is a reflective subcategory of \textbf{Mon}, and that \textbf{Mon} is a reflective subcategory of \textbf{Sgr}.

Exercise 6. Prove that every reflective subcategory $S \hookrightarrow I \hookrightarrow C$ has a unique way to extend a function $R(C) = R_C$ to a functor so that the following diagram commutes for every morphism $C_1 \xrightarrow{m} C_2$ of C (meaning all paths are equal):

$$
\begin{array}{ccc}
C_1 & \xrightarrow{r_{C_1}} & I(R(C_1)) \\
m & \downarrow & I(R(m)) \\
C_2 & \xrightarrow{r_{C_2}} & I(R(C_2))
\end{array}
$$

Exercise 7. Prove that, for a reflective subcategory $S \hookrightarrow I \hookrightarrow C$, the subcategory (S, I) is full if and only if for every object S of S the identity on $I(S)$ is a reflection arrow.