Monads
Ross Tate
October 16, 2014

Definition (Monad for a 2-Category \(C \)). A tuple \((C, m, \mu, a, \eta, i) \) whose components have the following types:

- **Object** \(C \) is an object of \(C \)
- **Morphism** \(m \) is a morphism of \(C \) from \(C \) to \(C \)
- **Join** \(\mu \) is a 2-cell of \(C \) from \(m ; m \Rightarrow m \)

Associativity \(a \) is a proof that

\[
\begin{align*}
\mu & \quad \mu \\
C & \quad C \\
\mu & \quad \mu \\
C & \quad C \\
m & \quad m \\
m & \quad m \\
m & \quad m \\
C & \quad C
\end{align*}
\]

In other words,

\[
\begin{align*}
\mu & \quad \mu \\
C & \quad C \\
\mu & \quad \mu \\
C & \quad C \\
m & \quad m \\
m & \quad m \\
m & \quad m \\
C & \quad C
\end{align*}
\]

Unit \(\eta \) is a 2-cell of \(C \) from \(C \) to \(m \)

Identity \(i \) is a proof that

\[
\begin{align*}
\mu & \quad \eta \\
C & \quad C \\
\mu & \quad \eta \\
C & \quad C \\
m & \quad m \\
m & \quad m \\
m & \quad m \\
C & \quad C
\end{align*}
\]

In other words,

\[
\begin{align*}
\mu & \quad \eta \\
C & \quad C \\
\mu & \quad \eta \\
C & \quad C \\
m & \quad m \\
m & \quad m \\
m & \quad m \\
C & \quad C
\end{align*}
\]

Remark. Given a 2-category, one can construct a multicategory whose objects are the 1-cells of the multicategory and whose morphisms are 2-cells from the composition of the inputs to the output. A monad is an internal monoid of that multicategory.

Theorem. For any monad \((C, m, \mu, \ast, \eta, \ast) \) and \(n : \mathbb{N} \), all 2-cells from \(m^n \) to \(m \) built from \(\mu, \eta, \) and identities are equal.
Example. $(\text{Set}, L, \text{flatten}, .[\cdot], .)$ is a monad in CAT. Similar monads on Set exist for M, S, and P.

Definition (Monad Morphism from $(C_1, m_1, \mu_1, \eta_1, \cdot)$ to $(C_2, m_2, \mu_2, \eta_2, \cdot)$). A morphism $f : C_1 \to C_2$ and a 2-cell $\alpha : m_1 ; f \Rightarrow f ; m_2$ such that:

Remark. Note that, if f above is required to be an identity morphism, then the above definition corresponds to a morphism of an internal monoids of a multicategory. The generality above comes from viewing monads as internal monoids of an opetory.

Example. The obvious natural transformations from L to M to S to P are all monad morphisms where f is the identity functor of Set.
