Definition ((\(\mathcal{C}, m, \mu, \eta, \iota\))-Postmodule in a 2-Category \(\mathcal{C}\)). A tuple \((\mathcal{R}, r, \rho, \varnothing, \iota)\) whose components have the following types:

- **Object** \(\mathcal{R} : \mathcal{C}\)
- **Morphism** \(r : \mathcal{C} \to \mathcal{R}\)
- **Action** \(\rho : m; r \Rightarrow r\)

Distributivity \(\varnothing\): A proof that

\[
\begin{align*}
\mathcal{C} & \xrightarrow{\rho} \mathcal{R} \\
\mathcal{C} & \xrightarrow{m} \mathcal{C} \\
\mathcal{C} & \xrightarrow{r} \mathcal{C}
\end{align*}
\]

equals

\[
\begin{align*}
\mathcal{C} & \xrightarrow{\rho} \mathcal{R} \\
\mathcal{C} & \xrightarrow{m} \mathcal{C} \\
\mathcal{C} & \xrightarrow{r} \mathcal{R}
\end{align*}
\]

In other words,

\[
\begin{align*}
\mathcal{C} & \xrightarrow{\rho} \mathcal{C} \\
\mathcal{C} & \xrightarrow{m} \mathcal{R} \\
\mathcal{C} & \xrightarrow{r} \mathcal{R}
\end{align*}
\]

equals

\[
\begin{align*}
\mathcal{C} & \xrightarrow{\rho} \mathcal{C} \\
\mathcal{C} & \xrightarrow{m} \mathcal{C} \\
\mathcal{C} & \xrightarrow{r} \mathcal{R}
\end{align*}
\]

Identity \(\iota\): A proof that

\[
\begin{align*}
\mathcal{C} & \xrightarrow{\eta} \mathcal{R} \\
\mathcal{C} & \xrightarrow{m} \mathcal{C} \\
\mathcal{C} & \xrightarrow{r} \mathcal{C}
\end{align*}
\]

equals

\[
\begin{align*}
\mathcal{C} & \xrightarrow{\rho} \mathcal{R} \\
\mathcal{C} & \xrightarrow{m} \mathcal{C} \\
\mathcal{C} & \xrightarrow{r} \mathcal{R}
\end{align*}
\]

In other words,

\[
\begin{align*}
\mathcal{C} & \xrightarrow{\rho} \mathcal{R} \\
\mathcal{C} & \xrightarrow{m} \mathcal{R} \\
\mathcal{C} & \xrightarrow{r} \mathcal{R}
\end{align*}
\]

Remark. A postmodule is more commonly called a right module.

Theorem. For every monad \((\mathcal{C}, m, \mu, \eta, \iota)\), the tuple \((\mathcal{C}, m, \mu, \varnothing, \iota)\) is a postmodule of that monad.

Definition (\(\text{Eff}(\mathcal{M})\) where \(\mathcal{M} = (\mathcal{C}, M, \mu, \eta, \iota)\) is a CAT-Monad). A category whose objects are the object of \(\mathcal{C}\) and whose morphisms from \(C_1\) to \(C_2\) are the \(\mathcal{C}\)-morphisms from \(C_1\) to \(M(C_2)\). Given \(f : C_1 \to C_2\) and \(g : C_2 \to C_3\) in \(\text{Eff}(\mathcal{M})\), their composition in \(\text{Eff}(\mathcal{M})\) is the \(\mathcal{C}\)-morphism \(f \circ M(g) \circ \mu_{C_3}\). This composition is associative due to...
naturality and associativity of \(\mu \). Given an object \(C \), the identity morphism in \(\text{Eff}(M) \) is the \(C \)-morphism \(\eta_C \). This is an identity with respect to composition due to identity of \(\eta \) with respect to \(\mu \).

Remark. \(\text{Eff}(M) \) is known as the Kleisli category of \(M \).

Exercise 1. Prove that \(\text{Eff}(P) \) is isomorphic to \(\text{Rel} \).

Exercise 2. Prove that there is a functor \(I : C \rightarrow \text{Eff}(M) \) that maps \(C \) to \(C \) and \(f \) to the morphism whose corresponding \(C \)-morphism is \(f : \eta \) (or equivalently \(\eta ; M(f) \)). Prove that there is a natural transformation \(\varrho : M ; I \Rightarrow I \) that maps \(C \) to the morphism whose corresponding \(C \)-morphism is \(\text{id}_M(C) \). Prove that \(\langle \text{Eff}(M), I, \varrho, \star, \star \rangle \) is a \(M \)-postmodule.

Remark. \(I \) above is injective if and only if \(\eta \) is a natural monomorphism, meaning \(\eta_C \) is a monomorphism for all \(C \).

Exercise 3. Prove that for any \(\text{CAT} \)-monad \(M \) and \(M \)-postmodule \(\langle R, R, \rho, \star, \star \rangle \), there is a unique functor \(R' : \text{Eff}(M) \rightarrow R \) such that \(R = I ; R' \) and \(\rho = \varrho \cdot R' \).

Remark. Given a 2-category \(C \), one can construct an opetory with the same 0-cells and 1-cells and with a 2-cell for each 2-cell from the composition of the inputs to the output. \(1 \) is the opetory with one 0-cell \(C \), one 1-cell \(m : C \rightarrow C \), and one 2-cell from \(m^n \Rightarrow m \) for each \(n : N \). A monad \(M \) in \(C \) corresponds to a functor \(M \) of opetories from \(1 \) to \(C \). Let \(1_r \) be the operator with two 0-cells \(C \) and \(R \), two 1-cells \(m : C \rightarrow C \) and \(r : C \rightarrow R \), and one 2-cell from \(m^n r \) to \(r \) for each \(n : N \) and one 2-cell from \(m^n \Rightarrow m \) for each \(n : N \). There is a unique functor of opetories from \(1 \) to \(1_r \), which we will call \(I_r \). An \(M \)-postmodule \(R \), then, corresponds to a functor \(R \) of opetories from \(1_r \) to \(C \) such that \(I_r ; R \) equals \(M \).

Exercise 4. Show that a monad morphism from \(M_1 \) to \(M_2 \) provides a functor from \(\text{Eff}(M_1) \) to \(\text{Eff}(M_2) \).