Adjunctions
Ross Tate
October 6, 2014

Definition (Adjunction for a 2-Category \mathcal{C}). A tuple $\langle \mathcal{C}, \mathcal{D}, f, g, \eta, \varepsilon, f, g \rangle$ whose components have the following types:

- \mathcal{C} is an object of \mathcal{C}
- \mathcal{D} is an object of \mathcal{C}
- f is a morphism of \mathcal{C} from \mathcal{C} to \mathcal{D}
- g is a morphism of \mathcal{C} from \mathcal{D} to \mathcal{C}
- η is a 2-cell of \mathcal{C} from \mathcal{C} to f;
- ε is a 2-cell of \mathcal{C} from g; f to \mathcal{D}

f is a proof that f equals f. In other words, $\xymatrix{ \mathcal{C} \ar[r]^f & \mathcal{D} \ar[l]_{\eta} }$ equals $\xymatrix{ \mathcal{C} \ar[r]^f & \mathcal{D} }$.

g is a proof that g equals g. In other words, $\xymatrix{ \mathcal{D} \ar[r]^g & \mathcal{C} \ar[l]_{\varepsilon} }$ equals $\xymatrix{ \mathcal{D} \ar[r]^g & \mathcal{C} }$.

Definition (Left/Right Adjoint). f above is called the left adjoint, and g above is called the right adjoint. A morphism of a 2-category is a left/right adjoint if it is the left/right adjoint of some adjunction.

Exercise 1. Prove that there is a bijection between adjunctions in Cat and adjunctions via transpositions.

Example. Consider Prost. Suppose we had a pair of preordered sets $\langle \mathcal{C}, \leq \rangle$ and $\langle \mathcal{D}, \leq \rangle$, and we want to make an adjunction out of some relation-preserving functions $f : \mathcal{C} \to \mathcal{D}$ and $g : \mathcal{D} \to \mathcal{C}$. Then η exists if and only if $\forall c : \mathcal{C}. \ c \leq g(f(c))$, and β exists if and only if $\forall d : \mathcal{D}. \ f(g(d)) \leq g$. If η and β exist, then f and g are trivial since Prost is a locally thin 2-category. Such a situation is called a monotone Galois connection.