Transformations

Ross Tate

September 18, 2014

Remark. Proofs by contradiction or law of excluded middle are not permitted.

Exercise 1. Prove that for any category \mathbf{C} and any object $\mathcal{C} : \mathbf{C}$, the category $\mathbf{Sub}(\mathcal{C})$ is thin, meaning there is at most one morphism between any two objects.

Exercise 2. Prove that \mathbf{Prost} is a reflective subcategory of $\mathbf{Rel}(2)$ (the category whose objects are sets with a binary relation and whose morphisms are relation-preserving functions).

Remark. To get an early start on Exercise 3 below, look at Exercise 6 in the lecture notes for Nulls.

Exercise 3. Suppose a subcategory $\mathbf{S} \rightarrow \mathbf{C}$ has a mapping from each object $\mathcal{C} : \mathbf{C}$ to a reflection arrow $\mathcal{C} \rightarrow I(R(\mathcal{C}))$. Prove that there is a unique way to extend the function R to a functor from \mathbf{C} to \mathbf{S} such that the reflection arrows form a natural transformation $\tau : \mathbf{C} \Rightarrow R; I$.

Exercise 4. Prove that the category \mathbf{Cat} can be enriched in the multicategory \mathbf{CAT}.