Exercise 1. Prove that for any 2-category \mathcal{C} and any adjunction $f \dashv g$ in \mathcal{C}, one can build a monad in \mathcal{C} whose underlying morphism is $f ; g$.

Exercise 2. Prove that, in the 2-category CAT, for every monad \mathcal{M} with underlying functor M on a category \mathcal{C} there is some adjunction $F \dashv U$ such that M equals $F ; U$. Hint: use the underlying functor $U : \text{Alg}(\mathcal{M}) \to \mathcal{C}$ as the right adjoint.

Remark. The above theorem holds for monads in CAT but not necessarily for monads in other 2-categories.