Exercise 1. Give, for any category C and any object $C : C$, a monoidal structure on the set $C \to C$.

Exercise 2. Prove that for any monoid \mathcal{M} there is a category with one object \star such that $\star \to \star$ equals \mathcal{M}.

Exercise 3. Show that the above extends to a functor from \textbf{Mon} to \textbf{Cat}.

Exercise 4. Show that there is a functor $F : \textbf{Set} \to \textbf{Mon}$ and a functor $U : \textbf{Mon} \to \textbf{Set}$ such that $F ; U$ equals \mathbb{L}. Hint: U maps a monoid to its underlying set.

Exercise 5. Prove that any category that has exactly one functor to it from each other category must be isomorphic to the category $\mathbf{1}$.

Exercise 6. Prove that any category that has exactly one functor from it to each other category must be isomorphic to the category $\mathbf{0}$.

Exercise 7. Given categories A and B, define a category $A \times B$ with “projection” functors π_A and π_B from it to A and B respectively.