Transformations

Ross Tate

September 29, 2014

Exercise 1. Prove that for any category \mathbf{C} and any object $\mathcal{C}: \mathbf{C}$, the category $\mathbf{S u b}(\mathcal{C})$ is thin, meaning there is at most one morphism between any two objects.

Proof. Let $m_{1}: \mathcal{S}_{1} \hookrightarrow \mathcal{C}$ and $m_{2}: \mathcal{S}_{2} \hookrightarrow \mathcal{C}$ be objects of $\operatorname{Sub}(\mathcal{C})$, and let f_{1} and f_{2} be morphisms from $\left\langle\mathcal{S}_{1}, m_{1}\right\rangle$ to $\left\langle\mathcal{S}_{2}, m_{2}\right\rangle$. By definition, the means $f_{1} ; m_{2}$ equals m_{1} and $f_{2} ; m_{2}$ equals m_{1}. Thus, $f_{1} ; m_{2}$ equals $f_{2} ; m_{2}$. In order to be object of $\operatorname{Sub}(C), m_{2}$ must be a monomorphism. By the definition of monomorphism, the equality $f_{1} ; m_{2}=f_{2} ; m_{2}$ implies f_{1} equals f_{2}, thereby guaranteeing thinness.

Exercise 2. Prove that Prost is a reflective subcategory of $\operatorname{Rel}(2)$ (the category whose objects are sets with a binary relation and whose morphisms are relation-preserving functions).

Proof. Given a set X with a binary relation $R: X \times X \rightarrow$ Prop, define \leq_{R} to be the reflexive-transitive closure of R. The identity function X is a relation-preserving function from $\langle X, R\rangle$ to $\left\langle X, \leq_{R}\right\rangle$ by the definition of closure. Suppose f is a relation-preserving function from $\langle X, R\rangle$ to $\langle Y, \sqsubseteq\rangle$, and \sqsubseteq is a reflexive, transitive relation. Then $f(x) \sqsubseteq f(x)$ due to reflexivity, and given a chain $x_{1} R \ldots R x_{n}$ we know $f\left(x_{1}\right) \sqsubseteq \cdots \sqsubseteq f\left(x_{n}\right)$ and so $f\left(x_{1}\right) \sqsubseteq f\left(x_{n}\right)$ by transitivity. Therefore, f is also a relation-preserving function from $\left\langle X, \leq_{R}\right\rangle$ to $\langle Y, \sqsubseteq\rangle$ by the definition of reflexivetransitive closure.

Exercise 3. Suppose a subcategory $\mathbf{S} \stackrel{I}{\hookrightarrow} \mathbf{C}$ has a mapping from each object $\mathcal{C}: \mathbf{C}$ to a reflection arrow $\mathcal{C} \xrightarrow{r_{C}} I(R(\mathcal{C}))$. Prove that there is a unique way to extend the function R to a functor from \mathbf{C} to \mathbf{S} such that the reflection arrows form a natural transformation $r: \mathbf{C} \Rightarrow R ; I$.

Proof. Given a C-morphism $f: \mathcal{C}_{1} \rightarrow \mathcal{C}_{2}$, define $R(f)$ to be the unique morphism $\left(f ; r_{C_{2}}\right)^{\leftarrow}$ with the property that $r_{\mathcal{C}_{1}} ; I\left(\left(f ; r_{\mathcal{C}_{2}}\right)^{\leftarrow}\right)=f ; r_{\mathcal{C}_{2}}$ guaranteed to exist because $r_{\mathcal{C}_{1}}$ is a reflection arrow. By construction, this makes r a natural transformation from \mathbf{C} to $R ; I$. Simililary, uniqueness of $\left(f ; r_{C_{2}}\right)^{\leftarrow}$ guarantees uniqueness of R. All that is left to prove is that R is a functor. By definition, $R(f ; g)$ is the unique morphism with the property that $r_{C_{1}} ; I(R(f ; g))$ equals $(f ; g) ; r_{C_{3}}$. The chain of equalities $r_{C_{1}} ; I(R(f) ; R(g))=r_{\mathcal{C}_{1}} ; I(R(f)) ; I(R(g))=f ; r_{C_{2}} ; I(R(g))=f ; \mathcal{g} ; r_{C_{3}}$ shows that $R(f) ; R(g)$ also enjoys this property and so must equal $R(f ; g)$. Similarly, the chain of equalities $r_{C} ; I\left(i d d_{R(\mathcal{C})}\right)=$ $r_{C} ; i d_{I(R(C))}=r_{C}=i d_{\mathcal{C}} ; r_{\mathcal{C}}$ implies that $i d_{R(\mathcal{C})}$ equals $R\left(i d_{\mathcal{C}}\right)$.

Exercise 4. Prove that the category Cat can be enriched in the multicategory CAT.
Proof. We present the biased enrichment:

Objects: The class of small categories
Morphisms: Given small categories \mathbf{C} and \mathbf{D}, the corresponding object of morphisms is the category of functors and natural transformations $\mathbf{C} \rightarrow \mathbf{D}$

Compositions c : Define composition to be the binary functor from $[\mathbf{C} \rightarrow \mathbf{D}, \mathbf{D} \rightarrow \mathbf{E}]$ to $\mathbf{C} \rightarrow \mathbf{E}$ that maps $\langle F: \mathbf{C} \rightarrow \mathbf{D}, G: \mathbf{D} \rightarrow \mathbf{E}\rangle$ to $F ; G: \mathbf{C} \rightarrow \mathbf{E}$ and $\left\langle\alpha: F_{1} \Rightarrow F_{2}, \beta: G_{1} \Rightarrow G_{2}\right\rangle$ to $\alpha \cdot \beta: F_{1} ; G_{1} \Rightarrow F_{2} ; G_{2}$ where $(\alpha \cdot \beta)_{\mathcal{C}}$ is any path in the diagram below, which commutes due to naturality of β :

$\alpha \cdot \beta$ is a natural transformation since $G_{1}\left(F_{1}(c)\right) ;(\alpha \cdot \beta)_{\mathcal{C}_{2}}=G_{1}\left(F_{1}(c)\right) ; \beta_{F_{1}\left(\mathcal{C}_{2}\right)} ; G_{2}\left(\alpha_{\mathcal{C} 2}\right)=$ $\beta_{F_{1}\left(\mathcal{C}_{1}\right)} ; G_{2}\left(F_{1}(c)\right) ; G_{2}\left(\alpha_{C 2}\right)=\beta_{F_{1}\left(\mathcal{c}_{1}\right)} ; G_{2}\left(F_{1}(c) ; \alpha_{C 2}\right)=\beta_{F_{1}\left(\mathcal{c}_{1}\right)} ; G_{2}\left(\alpha_{\mathcal{C}_{1}} ; F_{2}(c)\right)=$ $\beta_{F_{1}\left(\mathcal{C}_{1}\right)} ; G_{2}\left(\alpha_{\mathcal{C}_{1}}\right) ; G_{2}\left(F_{2}(c)\right)=(\alpha \cdot \beta)_{\mathcal{C}_{1}} ; G_{2}\left(F_{2}(c)\right)$ holds for any $c: \mathcal{C}_{1} \rightarrow \mathcal{C}_{2}$.
To be a functor this process needs to distribute over composition of natural transformations in $\mathbf{C} \rightarrow \mathbf{D}$ (and preserve identities, which I show later). So, we need to show $\left(\alpha ; \alpha^{\prime}\right) \cdot\left(\beta ; \beta^{\prime}\right)$ equals $(\alpha \cdot \beta) ;\left(\alpha^{\prime} \cdot \beta^{\prime}\right)$. Consider the following two diagrams:

Both diagrams commute due to naturality and the definition of \cdot. Notice that the left wall of both diagrams are equal due to the definition of ; on natural transformations and the distributivity of G_{1}. Similarly for the other three walls. Thus the two diagonals must be equal. Since the left diagrams's diagonal is $\left((\alpha \cdot \beta) ;\left(\alpha^{\prime} \cdot \beta^{\prime}\right)\right)_{\mathcal{C}}$ by definition of $;$, this proves $\left(\alpha ; \alpha^{\prime}\right) \cdot\left(\beta ; \beta^{\prime}\right)$ equals $(\alpha \cdot \beta) ;\left(\alpha^{\prime} \cdot \beta^{\prime}\right)$.
Lastly, this process preserves identities:

$$
\left(i d_{F} \cdot i d_{G}\right)_{\mathcal{C}}=G\left(i d_{F(\mathcal{C})}\right) ; i d_{G(F(\mathcal{C}))}=i d_{G(F(\mathcal{C}))} ; i d_{G(F(\mathcal{C}))}=i d_{G(F(\mathcal{C}))}=\left(i d_{F ; G}\right)_{\mathcal{C}}
$$

Associativity a: We need to show that $(F ; G) ; H$ equals $F ;(G ; H)$, which is already known since Cat is a category and so composition is associative, and that $(\alpha \cdot \beta) \cdot \gamma$ equals $\alpha \cdot(\beta \cdot \gamma)$. Consider the following cubes:

Cube (\mathfrak{a}) commutes due to naturality and functoriality. It indicates the missing labels for cubes (\mathfrak{b}) and (\mathfrak{c}), which also commute by the definition of $\cdot((\alpha \cdot \beta) \cdot \gamma)_{\mathcal{C}}$ is defined to be the diagonal of cube (\mathfrak{b}), and
$(\alpha \cdot(\beta \cdot \gamma))_{\mathcal{C}}$ is defined to be the diagonal of cube (\mathfrak{c}). Both of those are the diagonals of cube (\mathfrak{a}) and so must be equal, proving associativity.

Identities i : For each small category \mathbf{C}, we need to select an object of $\mathbf{C} \rightarrow \mathbf{C}$. We select the identity functor.
Identity \mathfrak{i} : We need to show that $I d_{\mathbf{C}} ; F=F=F ; I d_{\mathbf{D}}$, which is true since Cat is a category and we are using its identities, and that $I d_{\mathbf{C}} \cdot \alpha=\alpha=\alpha \cdot I d_{\mathbf{D}}$:

$$
\left(i d_{I d_{\mathbf{C}}} \cdot \alpha\right)_{\mathcal{C}}=F_{1}\left(i d_{\mathcal{C}}\right) ; \alpha_{I d_{\mathbf{C}}(\mathcal{C})}=i d_{F_{1}(\mathcal{C})} ; \alpha_{\mathcal{C}}=\alpha_{\mathcal{C}}=\alpha_{\mathcal{C}} ; i d_{F_{2}(\mathcal{C})}=I d_{\mathbf{D}}\left(\alpha_{\mathcal{C}}\right) ; i d_{I d_{\mathbf{D}}\left(F_{2}(\mathcal{C})\right)}=\left(\alpha \cdot i d_{I d_{\mathbf{D}}}\right)_{\mathcal{C}}
$$

