Transformations

Ross Tate

September 29, 2014

Exercise 1. Prove that for any category C and any object C : C, the category Sub(C) is thin, meaning there is at most one morphism between any two objects.

Proof. Let $m_1 : S_1 \hookrightarrow C$ and $m_2 : S_2 \hookrightarrow C$ be objects of $\mathbf{Sub}(C)$, and let f_1 and f_2 be morphisms from $\langle S_1, m_1 \rangle$ to $\langle S_2, m_2 \rangle$. By definition, the means $f_1 ; m_2$ equals m_1 and $f_2 ; m_2$ equals m_1 . Thus, $f_1 ; m_2$ equals $f_2 ; m_2$. In order to be object of $\mathbf{Sub}(C)$, m_2 must be a monomorphism. By the definition of monomorphism, the equality $f_1 ; m_2 = f_2 ; m_2$ implies f_1 equals f_2 , thereby guaranteeing thinness.

Exercise 2. Prove that **Prost** is a reflective subcategory of $\mathbf{Rel}(2)$ (the category whose objects are sets with a binary relation and whose morphisms are relation-preserving functions).

Proof. Given a set X with a binary relation $R: X \times X \to \operatorname{Prop}$, define \leq_R to be the reflexive-transitive closure of R. The identity function X is a relation-preserving function from $\langle X, R \rangle$ to $\langle X, R \rangle$ to $\langle X, \leq_R \rangle$ by the definition of closure. Suppose f is a relation-preserving function from $\langle X, R \rangle$ to $\langle Y, \Box \rangle$, and \Box is a relative, transitive relation. Then $f(x) \sqsubseteq f(x)$ due to reflexivity, and given a chain $x_1 R \ldots R x_n$ we know $f(x_1) \sqsubseteq \cdots \sqsubseteq f(x_n)$ and so $f(x_1) \sqsubseteq f(x_n)$ by transitivity. Therefore, f is also a relation-preserving function from $\langle X, \leq_R \rangle$ to $\langle Y, \subseteq_R \rangle$ to $\langle Y, \subseteq_R \rangle$ by the definition of reflexive-transitive closure.

Exercise 3. Suppose a subcategory $\mathbf{S} \stackrel{I}{\hookrightarrow} \mathbf{C}$ has a mapping from each object $\mathcal{C} : \mathbf{C}$ to a reflection arrow $\mathcal{C} \stackrel{r_{\mathcal{C}}}{\to} I(R(\mathcal{C}))$. Prove that there is a unique way to extend the function R to a functor from \mathbf{C} to \mathbf{S} such that the reflection arrows form a natural transformation $r : \mathbf{C} \Rightarrow R; I$.

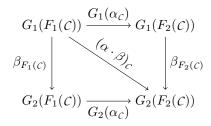
Proof. Given a **C**-morphism $f : C_1 \to C_2$, define R(f) to be the unique morphism $(f; r_{C_2})^{\leftarrow}$ with the property that $r_{C_1}; I((f; r_{C_2})^{\leftarrow}) = f; r_{C_2}$ guaranteed to exist because r_{C_1} is a reflection arrow. By construction, this makes r a natural transformation from **C** to R; I. Simililary, uniqueness of $(f; r_{C_2})^{\leftarrow}$ guarantees uniqueness of R. All that is left to prove is that R is a functor. By definition, R(f; g) is the unique morphism with the property that $r_{C_1}; I(R(f; g))$ equals $(f; g); r_{C_3}$. The chain of equalities $r_{C_1}; I(R(f); R(g)) = r_{C_1}; I(R(f)); I(R(g)) = f; r_{C_2}; I(R(g)) = f; g; r_{C_3}$ shows that R(f); R(g) also enjoys this property and so must equal R(f; g). Similarly, the chain of equalities $r_C; I(id_{R(C)}) = r_C; id_{I(R(C))} = r_C = id_C; r_C$ implies that $id_{R(C)}$ equals $R(id_C)$.

Exercise 4. Prove that the category Cat can be enriched in the multicategory CAT.

Proof. We present the biased enrichment:

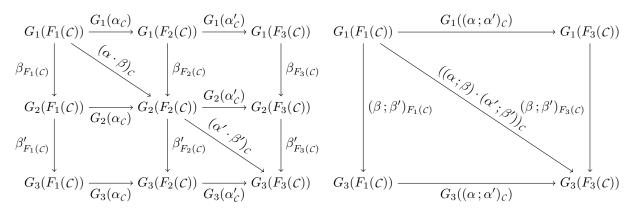
Objects: The class of small categories

- Morphisms: Given small categories C and D, the corresponding object of morphisms is the category of functors and natural transformations $C \rightarrow D$
- **Compositions** *c*: Define composition to be the binary functor from $[\mathbf{C} \to \mathbf{D}, \mathbf{D} \to \mathbf{E}]$ to $\mathbf{C} \to \mathbf{E}$ that maps $\langle F : \mathbf{C} \to \mathbf{D}, G : \mathbf{D} \to \mathbf{E} \rangle$ to $F; G : \mathbf{C} \to \mathbf{E}$ and $\langle \alpha : F_1 \Rightarrow F_2, \beta : G_1 \Rightarrow G_2 \rangle$ to $\alpha \cdot \beta : F_1; G_1 \Rightarrow F_2; G_2$ where $(\alpha \cdot \beta)_{\mathcal{C}}$ is any path in the diagram below, which commutes due to naturality of β :



 $\begin{array}{lll} \alpha \cdot \beta & \text{is a natural transformation since } G_1(F_1(\mathfrak{c})); (\alpha \cdot \beta)_{\mathcal{C}_2} &= G_1(F_1(\mathfrak{c})); \beta_{F_1(\mathcal{C}_2)}; G_2(\alpha_{\mathcal{C}_2}) &= \\ \beta_{F_1(\mathcal{C}_1)}; G_2(F_1(\mathfrak{c})); G_2(\alpha_{\mathcal{C}_2}) &= & \beta_{F_1(\mathcal{C}_1)}; G_2(F_1(\mathfrak{c}); \alpha_{\mathcal{C}_2}) &= & \beta_{F_1(\mathcal{C}_1)}; G_2(\alpha_{\mathcal{C}_1}; F_2(\mathfrak{c})) &= \\ \beta_{F_1(\mathcal{C}_1)}; G_2(\alpha_{\mathcal{C}_1}); G_2(F_2(\mathfrak{c})) &= (\alpha \cdot \beta)_{\mathcal{C}_1}; G_2(F_2(\mathfrak{c})) \text{ holds for any } \mathfrak{c} : \mathcal{C}_1 \to \mathcal{C}_2. \end{array}$ To be a functor this process needs to distribute over composition of natural transformations in $\mathbb{C} \to \mathbb{D}$

(and preserve identities, which I show later). So, we need to show $(\alpha; \alpha') \cdot (\beta; \beta')$ equals $(\alpha \cdot \beta); (\alpha' \cdot \beta')$. Consider the following two diagrams:

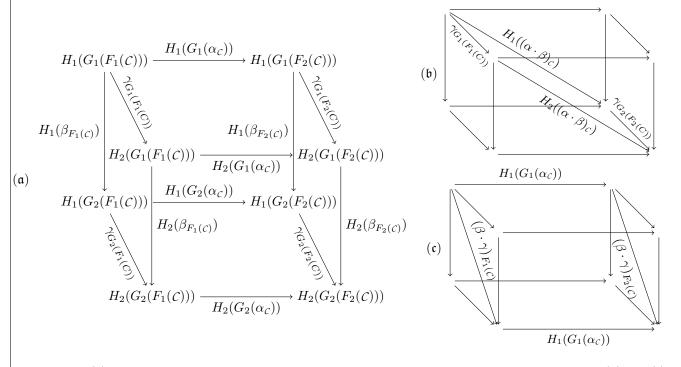


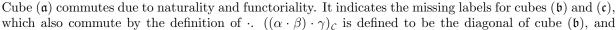
Both diagrams commute due to naturality and the definition of \cdot . Notice that the left wall of both diagrams are equal due to the definition of ; on natural transformations and the distributivity of G_1 . Similarly for the other three walls. Thus the two diagonals must be equal. Since the left diagrams's diagonal is $((\alpha \cdot \beta); (\alpha' \cdot \beta'))_{\mathcal{C}}$ by definition of ;, this proves $(\alpha; \alpha') \cdot (\beta; \beta')$ equals $(\alpha \cdot \beta); (\alpha' \cdot \beta')$.

Lastly, this process preserves identities:

$$(\mathit{id}_{F} \cdot \mathit{id}_{G})_{\mathcal{C}} = G(\mathit{id}_{F(\mathcal{C})}); \mathit{id}_{G(F(\mathcal{C}))} = \mathit{id}_{G(F(\mathcal{C}))}; \mathit{id}_{G(F(\mathcal{C}))} = \mathit{id}_{G(F(\mathcal{C}))} = (\mathit{id}_{F;G})_{\mathcal{C}}$$

Associativity a: We need to show that (F; G); H equals F; (G; H), which is already known since **Cat** is a category and so composition is associative, and that $(\alpha \cdot \beta) \cdot \gamma$ equals $\alpha \cdot (\beta \cdot \gamma)$. Consider the following cubes:





 $(\alpha \cdot (\beta \cdot \gamma))_{\mathcal{C}}$ is defined to be the diagonal of cube (\mathfrak{c}) . Both of those are the diagonals of cube (\mathfrak{a}) and so must be equal, proving associativity.

Identities *i*: For each small category \mathbf{C} , we need to select an object of $\mathbf{C} \rightarrow \mathbf{C}$. We select the identity functor.

Identity i: We need to show that $Id_{\mathbf{C}}$; F = F = F; $Id_{\mathbf{D}}$, which is true since **Cat** is a category and we are using its identities, and that $Id_{\mathbf{C}} \cdot \alpha = \alpha = \alpha \cdot Id_{\mathbf{D}}$:

 $(\mathit{id}_{\mathit{Id}_{\mathbf{C}}} \cdot \alpha)_{\mathcal{C}} = \mathit{F}_{1}(\mathit{id}_{\mathcal{C}}); \\ \alpha_{\mathit{Id}_{\mathbf{C}}(\mathcal{C})} = \mathit{id}_{\mathit{F}_{1}(\mathcal{C})}; \\ \alpha_{\mathcal{C}} = \alpha_{\mathcal{C}} = \alpha_{\mathcal{C}}; \\ \mathit{id}_{\mathit{F}_{2}(\mathcal{C})} = \mathit{Id}_{\mathbf{D}}(\alpha_{\mathcal{C}}); \\ \mathit{id}_{\mathit{Id}_{\mathbf{D}}(\mathit{F}_{2}(\mathcal{C}))} = (\alpha \cdot \mathit{id}_{\mathit{Id}_{\mathbf{D}}})_{\mathcal{C}}$