Topoi

Ross Tate

November 30, 2014

Definition. Given an object C and subobjects $m_1 : S_1 \hookrightarrow C$ and $m_2 : S_2 \hookrightarrow C$, define $m_1 \subseteq_C m_2$ to be $\exists f : S_1 \to S_2$. $m_1 = f ; m_2$.

Theorem. $\subseteq_{\mathcal{C}}$ is a preorder on the subobjects of \mathcal{C} .

Definition. Given an object \mathcal{C} of a topos, define $\operatorname{true}_{\mathcal{C}} : \mathcal{C} \to \Omega$ to be $\langle \rangle_{\mathcal{C}}$; true.

Exercise 1. Given an object C of a topos and subobjects $m_1 : S_1 \hookrightarrow C$ and $m_2 : S_2 \hookrightarrow C$, prove that $m_1 \subseteq_C m_2$ holds if and only if $m_1 ; \chi_{m_2}$ equals \mathbf{true}_{S_1} .

Proof. Suppose $m_1 \subseteq_{\mathcal{C}} m_2$ holds. Let $f : \mathcal{S}_1 \to \mathcal{S}_2$ be a morphism proving this property. Then $m_1; \chi_{m_2}$ equals $f; m_2; \chi_{m_2}$, which equals $f; \langle \rangle_{\mathcal{S}_1}; \mathbf{true}$, which equals $\langle \rangle_{\mathcal{S}_2}; \mathbf{true}$, which is the definition of $\mathbf{true}_{\mathcal{S}_1}$.

Suppose $m_1; \chi_{m_2}$ equals \mathbf{true}_{S_1} . Then the fact that m_2 is a pullback of χ_{m_2} and \mathbf{true} implies there exists a morphism $f: S_1 \to S_2$ such that m equals $f; m_2$. Thus, f demonstrates that $m_1 \subseteq_{\mathcal{C}} m_2$ holds.

Definition. Given an object C and a morphism $p : C \to \Omega$, let $m_p : S_p \hookrightarrow C$ be the (unique up to isomorphism) subobject produced by the pullback of **true** and p.

Exercise 2. Given an object C of a topos and subobjects $m_1 : S_1 \hookrightarrow C$ and $m_2 : S_2 \hookrightarrow C$, let $p : C \to \Omega$ be defined as $\langle \chi_{m_1}, \chi_{m_2} \rangle$; \wedge . Prove that m_p is the meet of m_1 and m_2 with respect to the preorder C. Hint: take advantage of the following theorem.

Theorem. Given any commuting diagram of the following form (minus the dashed line), if the outer $[\mathcal{A}, \mathcal{B}, \mathcal{E}, \mathcal{F}]$ is a pullback square and the lower $[\mathcal{C}, \mathcal{D}, \mathcal{E}, \mathcal{F}]$ is a pullback square, then the upper $[\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}]$ using the uniquely induced dashed line is also a pullback square:

$$\begin{array}{ccc} \mathcal{A} \longrightarrow \mathcal{B} \\ \begin{pmatrix} \cdot & & \\ \cdot & & \\ \mathcal{C} \longrightarrow \mathcal{D} \\ \downarrow & & \downarrow \\ \mathcal{E} \longrightarrow \mathcal{F} \end{array}$$

Proof. Apply the above theorem to the following diagram:

Because the upper square commutes, we have m_p ; $\chi_{m_1} = m_p$; $\langle \chi_{m_1}, \chi_{m_2} \rangle$; $\pi_1 = \langle \rangle$; $\langle \mathbf{true}, \mathbf{true} \rangle$; $\pi_1 = \mathbf{true}_{\mathcal{S}_p}$, so by the prior exercise $m_p \subseteq_{\mathcal{C}} m_1$ holds. Similarly, $m_p \subseteq_{\mathcal{C}} m_2$ holds. Thus m_p is a subset of both m_1 and m_2 .

Next, suppose there is some subobject $m : S \hookrightarrow C$ such that $m \subseteq_C m_1$ and $m \subseteq_C m_2$ hold. Then, by the prior exercise, $m; \langle \chi_{m_1}, \chi_{m_2} \rangle; \pi_i = m; \chi_{m_i} = \langle \rangle; \mathbf{true} = \langle \rangle; \langle \mathbf{true}, \mathbf{true} \rangle; \pi_i$ for both $i \in \{1, 2\}$, which implies $m; \langle \chi_{m_1}, \chi_{m_2} \rangle$ equals $\langle \rangle; \langle \mathbf{true}, \mathbf{true} \rangle$ by property of products. Because the upper square is a pullback, this implies there exists a morphism $f : S \to S_p$ with the property that m equals $f; m_p$, proving that $m \subseteq_C m_p$ holds.