Topoi

Ross Tate

November 30, 2014

Definition. Given an object \mathcal{C} and subobjects $m_{1}: \mathcal{S}_{1} \hookrightarrow \mathcal{C}$ and $m_{2}: \mathcal{S}_{2} \hookrightarrow \mathcal{C}$, define $m_{1} \subseteq_{C} m_{2}$ to be $\exists f: \mathcal{S}_{1} \rightarrow$ $\mathcal{S}_{2} . m_{1}=f ; m_{2}$.

Theorem. \subseteq_{C} is a preorder on the subobjects of \mathcal{C}.
Definition. Given an object \mathcal{C} of a topos, define $\boldsymbol{\operatorname { t r u e }}_{\mathcal{C}}: \mathcal{C} \rightarrow \Omega$ to be $\left\rangle_{\mathcal{C}} ; \boldsymbol{\operatorname { t r u e }}\right.$.
Exercise 1. Given an object \mathcal{C} of a topos and subobjects $m_{1}: \mathcal{S}_{1} \hookrightarrow \mathcal{C}$ and $m_{2}: \mathcal{S}_{2} \hookrightarrow \mathcal{C}$, prove that $m_{1} \subseteq_{C} m_{2}$ holds if and only if $m_{1} ; \chi_{m_{2}}$ equals true \mathcal{S}_{1}.

Proof. Suppose $m_{1} \subseteq_{c} m_{2}$ holds. Let $f: S_{1} \rightarrow S_{2}$ be a morphism proving this property. Then $m_{1} ; \chi_{m_{2}}$ equals $f ; m_{2} ; \chi_{m_{2}}$, which equals $f ;\langle \rangle_{\mathcal{S}_{1}}$; true, which equals $\left\rangle_{\mathcal{S}_{2}} ;\right.$ true, which is the definition of true ${ }_{\mathcal{S}_{1}}$.

Suppose $m_{1} ; \chi_{m_{2}}$ equals true \mathcal{S}_{1}. Then the fact that m_{2} is a pullback of $\chi_{m_{2}}$ and true implies there exists a morphism $f: \mathcal{S}_{1} \rightarrow \mathcal{S}_{2}$ such that m equals $f ; m_{2}$. Thus, f demonstrates that $m_{1} \subseteq_{C} m_{2}$ holds.

Definition. Given an object \mathcal{C} and a morphism $p: \mathcal{C} \rightarrow \Omega$, let $m_{p}: S_{p} \hookrightarrow \mathcal{C}$ be the (unique up to isomorphism) subobject produced by the pullback of true and p.

Exercise 2. Given an object \mathcal{C} of a topos and subobjects $m_{1}: \mathcal{S}_{1} \hookrightarrow \mathcal{C}$ and $m_{2}: \mathcal{S}_{2} \hookrightarrow \mathcal{C}$, let $p: \mathcal{C} \rightarrow \Omega$ be defined as $\left\langle\chi_{m_{1}}, \chi_{m_{2}}\right\rangle ; \wedge$. Prove that m_{p} is the meet of m_{1} and m_{2} with respect to the preorder \mathcal{C}. Hint: take advantage of the following theorem.

Theorem. Given any commuting diagram of the following form (minus the dashed line), if the outer $[\mathcal{A}, \mathcal{B}, \mathcal{E}, \mathcal{F}]$ is a pullback square and the lower $[\mathcal{C}, \mathcal{D}, \mathcal{E}, \mathcal{F}]$ is a pullback square, then the upper $[\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}]$ using the uniquely induced dashed line is also a pullback square:

Proof. Apply the above theorem to the following diagram:

Because the upper square commutes, we have $m_{p} ; \chi_{m_{1}}=m_{p} ;\left\langle\chi_{m_{1}}, \chi_{m_{2}}\right\rangle ; \pi_{1}=\langle \rangle ;\langle$ true, $\boldsymbol{\text { true }}\rangle ; \pi_{1}=\boldsymbol{t r u e}_{S_{p}}$, so by the prior exercise $m_{p} \subseteq_{c} m_{1}$ holds. Similarly, $m_{p} \subseteq_{c} m_{2}$ holds. Thus m_{p} is a subset of both m_{1} and m_{2}.

Next, suppose there is some subobject $m: \mathcal{S} \hookrightarrow C$ such that $m \subseteq_{c} m_{1}$ and $m \subseteq_{c} m_{2}$ hold. Then, by the prior exercise, $m ;\left\langle\chi_{m_{1}}, \chi_{m_{2}}\right\rangle ; \pi_{i}=m ; \chi_{m_{i}}=\langle \rangle ;$ true $=\langle \rangle ;\langle$ true, true $\rangle ; \pi_{i}$ for both $i \in\{1,2\}$, which implies $m ;\left\langle\chi_{m_{1}}, \chi_{m_{2}}\right\rangle$ equals $\rangle ;\langle$ true, true \rangle by property of products. Because the upper square is a pullback, this implies there exists a morphism $f: \mathcal{S} \rightarrow \mathcal{S}_{p}$ with the property that m equals $f ; m_{p}$, proving that $m \subseteq_{C} m_{p}$ holds.

