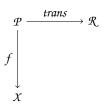
Proofs

Ross Tate

November 21, 2014

Exercise 1. Let *trans* : $\langle \{a, b, c\}, \{\langle a, b \rangle, \langle b, c \rangle \} \rangle \rightarrow \langle \{a, b, c\}, \{\langle a, b \rangle, \langle b, c \rangle, \langle a, c \rangle \} \rangle$ be a morphism of **Rel**(2) whose underlying function is the identity. Call its domain \mathcal{P} and its codomain \mathcal{R} . Describe, in standard set-theoretic terms, what the pushout of the following is, for any object \mathcal{X} and morphism $f : \mathcal{P} \rightarrow \mathcal{X}$:



Prove that your description is actually a pushout.

Proof. Let $\mathcal{Y} = \langle X, R_{\chi} \cup \{ \langle f(a), f(c) \rangle \} \rangle$. Let κ_{χ} be the identity function, which is obviously relation preserving. Let $\kappa_{\mathfrak{K}}$ be the underlying function of f, which is relation preserving because f is relation preserving and f(a) is related to f(c) in \mathcal{Y} by definition.

Suppose there is an object Z with morphisms $g: X \to Z$ and $h: \mathcal{R} \to Z$ such that f; g equals *trans*; h. Then, for $\kappa_X; [g, h]$ to equal g, the underlying function of [g, h] must be the underlying function of g because the underlying function of κ_X is the identity, which guarantees uniqueness of [g, h]. This also implies that $\kappa_{\mathcal{R}}; [g, h]$ equals h, since the underlying function of $\kappa_{\mathcal{R}}$ is f, and f; g equaling *trans*; h implies f; g equals h. For existence, we must prove that g is relation-preserving from \mathcal{Y} to Z and that $\kappa_{\mathcal{R}}; g$ equals h. Given two elements related in \mathcal{Y} , by the definition of the relation of \mathcal{Y} , they must either be related in X or they must be the pair $\langle f(a), f(c) \rangle$. The former case is preserved because g is relation-preserving from X to Z. For the latter case, g(f(a)) equals h(a) and g(f(c)) equals h(c), and aand c are related in \mathcal{R} , so h being relation-preserving implies that g(f(a)) must be related to g(f(c)) in Z.