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Exercise 1. Prove that there is a multicategory Mon whose objects are monoids and whose morphisms are the
multilinear homomorphisms with composition and identity are inherited from Set. This amounts to defining what
nullary multilinear homomorphisms are, and proving that multilinear homomorphisms are closed under composition
and identity.

Proof. An n-ary multilinear homomorphism is an n-ary function such that, for each input, fixing all other inputs
always produces a monoid homomorphism. Thus, the n = 1 case is simply a monoid homomorphism. For the n > 1
case, this means fixing any one input to any value produces an (n − 1)-ary multilinear homomorphism. Since the
nullary case has no inputs, this means that all nullary functions are nullary multilinear homomorphisms. Composing
with a unary monoid homomorphism produces a nullary function, which is a nullary multilinear homomorphism.
Composing with a multi-input multilinear homomorphism effectively fixes an input of the function, which by the
definition of a multilinear homomorphism still results in a mulitlinear homomoprhism.

As for composing non-nullary multilinear homomorphisms, I show this produces a multilinear homomorphism
for arbitrary f : [M1,M2] → N1 and g : [N1,N2] → O and the remaining non-nullary cases follow from similar
arguments. Suppose we have m1,m

′
1 : M1, m2,m

′
2 : M2, and n2, n

′
2 : N2. We need to prove the following:

g(f(m1,m2), e) = e: Follows immediately from multilinearity of g

g(f(m1,m2), n2 ∗ n′2) = g(f(m1,m2), n2) ∗ g(f(m1,m2), n′2): Follows immediately from multilinearity of g

g(f(m1, e), n2) = e: The left is equal to g(e, n2) by multilinearity of f , which equals the right by multilinearity of g

g(f(m1,m2 ∗m′2), n2) = g(f(m1,m2), n2) ∗ g(f(m1,m
′
2), n′2): The left is equal to g(f(m1,m2) ∗ f(m1,m

′
2), n2) by

multilinearity of f , which equals the right by multilinearity of g

g(f(e,m2), n2) = e: The left is equal to g(e, n2) by multilinearity of f , which equals the right by multilinearity of g

g(f(m1 ∗m′1,m2), n2) = g(f(m1,m2), n2) ∗ g(f(m′1,m2), n′2): The left is equal to g(f(m1,m2) ∗ f(m′1,m2), n2) by
multilinearity of f , which equals the right by multilinearity of g

The identity function is clearly a monoid homomorphism: id (e) = e and id (m1 ∗ m2) = m1 ∗ m2 = id (m1) ∗
id (m2).

Exercise 2. Prove that there is a bijection between the set of categories and the set of pairs 〈O,M〉 where O is an
element of Type1 and M is a functor of multicategories from Path(O) to Set.

Proof. Suppose we have a category C. Let O be the set OC. Then objects of Pair(OC) are pairs of objects of C.
Let the functor M map each pair 〈A,B〉 to MC(A,B), the set of C-morphisms from A to B. Now, suppose 〈A,B〉 is
the codomain of a morphism of Pair(OC). Then M needs to map this morphism to a function from morphism paths
in C from A to B to morphisms in C from A to B. Thus, M maps each morphism in Path(OC) to the composition
operation on the appropriate paths. Distributivity of M is given by associativity of unbiased composition in C, and
identity preservation of M is given by identity of unbiased composition in C.

Suppose we have a set O and a functor of multicategories M from Path(O) to Set. Let OC be the set O. Let
MC(A,B) be M(〈A,B〉). For composition, each path has the form A1 → . . .→ An, so compose a path by applying
the function that M maps the unique morphism from [〈A1, A2〉, . . . , 〈An−1, An〉] to 〈A1, An〉 to. Associativity of
unbiased composition is given by distributivity of M and thinness of Path(O). For example, suppose cA,B,C is
the unique morphism in Path(O) from [〈A,B〉, 〈B,C〉] to 〈A,C〉. Then cA,B,C composed appropriately with cA,C,D

equals the unique morphism from [〈A,B〉, 〈B,C〉, 〈C,D〉] to 〈A,D〉, and so does cB,C,D composed appropriately with
cA,B,D. Because of this, distributivity of the functor M implies binary composition is associative. Lastly, unbiased
identity is given by the fact that M preserves identities.

These two processes are clearly inverses of each other.

Exercise 3. Give an example of an internal monoid of Mon whose underlying set is N.
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Proof. Multiplication of natural numbers is a multilinear homomorphism from [N+,0,N+,0] to N+,0 that is associative
and has 1 : [ ]→ N+,0 as its identity. All proofs are basic arithmetic.

Exercise 4. Define a multicategory M with the property that, for any multicategory C, there is a bijection between
the set of functors from M to C and the set of internal monoids of C.

Proof. Define M to be the multicategory Path(1) with exactly one object and exactly one morphism for each arity.
A functor from M to C picks out a single object C of C and for each arity picks out a C -endomorphism of that
arity. Due to the thinness of M, functoriality implies that this collection of morphisms satisfies the associativity and
identity requirements of unbiased internal monoids, which are in 1-to-1 correspondence with biased internal monoids
(via the same proof as for non-internal monoids). For example, if mn is the unique n-ary morphism in M, and o is
the binary morphism of M that the functor maps m2, then distributivity implies o is associative since the two ways
to compose m2 with itself to get a ternary morphism both equal the same morphism of M, namely m3, and so must
both equal whatever the functor maps m3 to.

Exercise 5. Prove that the category CommMon can be enriched in the multicategory CommMon. That is,
show that there is a functor of multicategories from Path(OCommMon) to CommMon that when composed
with the underlying functor of multicategories from CommMon to Set produces the functor of multicategories
from Path(OCommMon) to Set defining the category CommMon.

Proof. This amounts to imposing a commutative monoidal structure on the set of monoid homomorphisms between
any two commutative monoids and proving that composition and identity are multilinear; everything else follows from
the fact that CommMon is a category. So, given monoid homomorphisms f and g, define f ∗g to be λx. f(x)∗g(x).
f ∗ g is a monoid homomorphism because (f ∗ g)(e) = f(e) ∗ g(e) = e ∗ e = e and (f ∗ g)(x ∗ y) = f(x ∗ y) ∗ g(x ∗ y) =
f(x) ∗ f(y) ∗ g(x) ∗ g(y) = f(x) ∗ g(x) ∗ f(y) ∗ g(y) = (f ∗ g)(x) ∗ (f ∗ g)(y). This operation is commutative and
associative because ∗ in the codomain is commutative and associative. Also, define e to be λx. e, which is trivially
a monoid homomorphism. It is the identity of ∗ because e is the identity of ∗ in the codomain.

Next, we need to show that composition is multilinear. e ; f2 = e because e always returns the identity element
and f2, being a monoid homomorphism, maps that to the identity. (f1∗g1) ; f2 = λx. f2((f1∗g1)(x)) = λx. f2(f1(x)∗
g1(x)) = λx. f2(f1(x))∗f2(g1(x)) = (f1 ; f2)∗(g1 ; f2). f1 ; e = e by definition of e. f1 ;(f2∗g2) = λx. (f2∗g2)(f1(x)) =
λx. f2(f1(x)) ∗ g2(f1(x)) = (f1 ; f2) ∗ (f1 ; g2).

Lastly, the identity is multilinear because any nullary function is multilinear.
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