Multicategories

Ross Tate

September 22, 2014

Exercise 1. Prove that there is a multicategory **Mon** whose objects are monoids and whose morphisms are the multilinear homomorphisms with composition and identity are inherited from **Set**. This amounts to defining what nullary multilinear homomorphisms are, and proving that multilinear homomorphisms are closed under composition and identity.

Proof. An n-ary multilinear homomorphism is an n-ary function such that, for each input, fixing all other inputs always produces a monoid homomorphism. Thus, the n=1 case is simply a monoid homomorphism. For the n>1 case, this means fixing any one input to any value produces an (n-1)-ary multilinear homomorphism. Since the nullary case has no inputs, this means that all nullary functions are nullary multilinear homomorphisms. Composing with a unary monoid homomorphism produces a nullary function, which is a nullary multilinear homomorphism. Composing with a multi-input multilinear homomorphism effectively fixes an input of the function, which by the definition of a multilinear homomorphism still results in a multilinear homomorphism.

As for composing non-nullary multilinear homomorphisms, I show this produces a multilinear homomorphism for arbitrary $f: [\mathcal{M}_1, \mathcal{M}_2] \to \mathcal{N}_1$ and $g: [\mathcal{N}_1, \mathcal{N}_2] \to \mathcal{O}$ and the remaining non-nullary cases follow from similar arguments. Suppose we have $m_1, m'_1: M_1, m_2, m'_2: M_2$, and $n_2, n'_2: N_2$. We need to prove the following:

 $g(f(m_1, m_2), e) = e$: Follows immediately from multilinearity of g

 $g(f(m_1, m_2), n_2 * n_2') = g(f(m_1, m_2), n_2) * g(f(m_1, m_2), n_2')$: Follows immediately from multilinearity of $g(f(m_1, m_2), n_2) * g(f(m_1, m_2), n_2')$:

 $g(f(m_1,e),n_2)=e$: The left is equal to $g(e,n_2)$ by multilinearity of f, which equals the right by multilinearity of g

 $g(f(m_1, m_2 * m_2'), n_2) = g(f(m_1, m_2), n_2) * g(f(m_1, m_2'), n_2')$: The left is equal to $g(f(m_1, m_2) * f(m_1, m_2'), n_2)$ by multilinearity of f, which equals the right by multilinearity of g

 $q(f(e, m_2), n_2) = e$: The left is equal to $q(e, n_2)$ by multilinearity of f, which equals the right by multilinearity of g

 $g(f(m_1 * m'_1, m_2), n_2) = g(f(m_1, m_2), n_2) * g(f(m'_1, m_2), n'_2)$: The left is equal to $g(f(m_1, m_2) * f(m'_1, m_2), n_2)$ by multilinearity of f, which equals the right by multilinearity of g

The identity function is clearly a monoid homomorphism: id(e) = e and $id(m_1 * m_2) = m_1 * m_2 = id(m_1) * id(m_2)$.

Exercise 2. Prove that there is a bijection between the set of categories and the set of pairs $\langle O, M \rangle$ where O is an element of Type₁ and M is a functor of multicategories from Path(O) to Set.

Proof. Suppose we have a category \mathbb{C} . Let O be the set $O_{\mathbb{C}}$. Then objects of $\operatorname{Pair}(O_{\mathbb{C}})$ are pairs of objects of \mathbb{C} . Let the functor M map each pair $\langle \mathcal{A}, \mathcal{B} \rangle$ to $M_{\mathbb{C}}(A, B)$, the set of \mathbb{C} -morphisms from \mathcal{A} to \mathcal{B} . Now, suppose $\langle \mathcal{A}, \mathcal{B} \rangle$ is the codomain of a morphism of $\operatorname{Pair}(O_{\mathbb{C}})$. Then M needs to map this morphism to a function from morphism paths in \mathbb{C} from \mathcal{A} to \mathcal{B} to morphisms in \mathbb{C} from \mathcal{A} to \mathcal{B} . Thus, M maps each morphism in $\operatorname{Path}(O_{\mathbb{C}})$ to the composition operation on the appropriate paths. Distributivity of M is given by associativity of unbiased composition in \mathbb{C} , and identity preservation of M is given by identity of unbiased composition in \mathbb{C} .

Suppose we have a set O and a functor of multicategories M from $\mathbf{Path}(O)$ to \mathbf{Set} . Let $O_{\mathbf{C}}$ be the set O. Let $M_{\mathbf{C}}(A,B)$ be $M(\langle A,B\rangle)$. For composition, each path has the form $A_1 \to \ldots \to A_n$, so compose a path by applying the function that M maps the unique morphism from $[\langle A_1,A_2\rangle,\ldots,\langle A_{n-1},A_n\rangle]$ to $\langle A_1,A_n\rangle$ to. Associativity of unbiased composition is given by distributivity of M and thinness of $\mathbf{Path}(O)$. For example, suppose $c_{A,B,C}$ is the unique morphism in $\mathbf{Path}(O)$ from $[\langle A,B\rangle,\langle B,C\rangle]$ to $\langle A,C\rangle$. Then $c_{A,B,C}$ composed appropriately with $c_{A,C,D}$ equals the unique morphism from $[\langle A,B\rangle,\langle B,C\rangle,\langle C,D\rangle]$ to $\langle A,D\rangle$, and so does $c_{B,C,D}$ composed appropriately with $c_{A,B,D}$. Because of this, distributivity of the functor M implies binary composition is associative. Lastly, unbiased identity is given by the fact that M preserves identities.

These two processes are clearly inverses of each other.

Exercise 3. Give an example of an internal monoid of Mon whose underlying set is N.

Proof. Multiplication of natural numbers is a multilinear homomorphism from $[\mathbb{N}_{+,0}, \mathbb{N}_{+,0}]$ to $\mathbb{N}_{+,0}$ that is associative and has $1:[] \to \mathbb{N}_{+,0}$ as its identity. All proofs are basic arithmetic.

Exercise 4. Define a multicategory M with the property that, for any multicategory C, there is a bijection between the set of functors from M to C and the set of internal monoids of C.

Proof. Define \mathbf{M} to be the multicategory $\mathbf{Path}(1)$ with exactly one object and exactly one morphism for each arity. A functor from \mathbf{M} to \mathbf{C} picks out a single object \mathcal{C} of \mathbf{C} and for each arity picks out a \mathcal{C} -endomorphism of that arity. Due to the thinness of \mathbf{M} , functoriality implies that this collection of morphisms satisfies the associativity and identity requirements of unbiased internal monoids, which are in 1-to-1 correspondence with biased internal monoids (via the same proof as for non-internal monoids). For example, if m_n is the unique n-ary morphism in \mathbf{M} , and o is the binary morphism of \mathbf{M} that the functor maps m_2 , then distributivity implies o is associative since the two ways to compose m_2 with itself to get a ternary morphism both equal the same morphism of \mathbf{M} , namely m_3 , and so must both equal whatever the functor maps m_3 to.

Exercise 5. Prove that the category CommMon can be enriched in the multicategory CommMon. That is, show that there is a functor of multicategories from $Path(O_{CommMon})$ to CommMon that when composed with the underlying functor of multicategories from CommMon to Set produces the functor of multicategories from $Path(O_{CommMon})$ to Set defining the category CommMon.

Proof. This amounts to imposing a commutative monoidal structure on the set of monoid homomorphisms between any two commutative monoids and proving that composition and identity are multilinear; everything else follows from the fact that **CommMon** is a category. So, given monoid homomorphisms f and g, define f * g to be λx . f(x) * g(x). f * g is a monoid homomorphism because (f * g)(e) = f(e) * g(e) = e * e = e and (f * g)(x * y) = f(x * y) * g(x * y) = f(x) * g(x) * g

Next, we need to show that composition is multilinear. e; $f_2 = e$ because e always returns the identity element and f_2 , being a monoid homomorphism, maps that to the identity. $(f_1 * g_1)$; $f_2 = \lambda x$. $f_2((f_1 * g_1)(x)) = \lambda x$. $f_2(f_1(x)) * f_2(g_1(x)) = (f_1; f_2) * (g_1; f_2)$. $f_1; e = e$ by definition of e. $f_1; (f_2 * g_2) = \lambda x$. $(f_2 * g_2)(f_1(x)) = \lambda x$. $f_2(f_1(x)) * g_2(f_1(x)) = (f_1; f_2) * (f_1; g_2)$.

Lastly, the identity is multilinear because any nullary function is multilinear.