Monoids

Ross Tate

September 5, 2014

Exercise 1. Given monoids \mathcal{A} and \mathcal{B} , give a monoidal structure $\mathcal{A} \& \mathcal{B}$ to the set $A \times B$ such that the projection functions π_A and π_B are monoid homomorphisms from $\mathcal{A} \& \mathcal{B}$ to \mathcal{A} and \mathcal{B} respectively.

Proof. Define $\langle a_1, b_1 \rangle * \langle a_2, b_2 \rangle$ to be $\langle a_1 * a_2, b_1 * b_2 \rangle$. This is associative because * is associative for both \mathcal{A} and \mathcal{B} . Define $e_{\mathcal{A}\&\mathcal{B}}$ to be $\langle e_{\mathcal{A}}, e_{\mathcal{B}} \rangle$. This is an identity because $e_{\mathcal{A}}$ and $e_{\mathcal{B}}$ are identities for \mathcal{A} and \mathcal{B} respectively. π_A is a monoid homomorphism since $\pi_A(\langle a_1 * a_2, b_1 * b_2 \rangle) = a_1 * a_2$, preserving multipliation, and $\pi_A(\langle e_{\mathcal{A}}, e_{\mathcal{B}} \rangle) = e_{\mathcal{A}}$, preserving identity. Similarly for π_B .

Exercise 2. Determine the monoid " \top " with the property that for every monoid \mathcal{A} there is exactly one monoid homomorphism from \mathcal{A} to \top .

Proof. The underlying set is 1, and multiplication and identity are the only functions with their respective signatures. Given two monoid homomorphisms from some monoid \mathcal{A} to \top , they must both map everything to the unique inhabitant of 1, making them equal.

Exercise 3. Determine the monoid "0" with the property that for every monoid \mathcal{A} there is exactly one monoid homomorphism from 0 to \mathcal{A} .

Proof. The underlying set is 1, and multiplication and identity are the only functions with their respective signatures. Given two monoid homomorphisms from 0 to some monoid \mathcal{A} , their only input is the identity of \top and so being monoid homomorphisms they must both map this only input to $e_{\mathcal{A}}$, making them equal.

Definition. Given monoids \mathcal{A} and \mathcal{B} , define the equivalence relation \approx on $\mathbb{L}(A \times B)$ to be the least equivalence relation such that:

- $1. \ \forall \vec{m}_1, \vec{m}_1', \vec{m}_2, \vec{m}_2' : \mathbb{L}(A \times B). \ \vec{m}_1 \approx \vec{m}_1' \land \vec{m}_2 \approx \vec{m}_2' \implies \vec{m}_1 + + \vec{m}_2 \approx \vec{m}_1' + + \vec{m}_2'$
- 2. $\forall b : B. [\langle e_{\mathcal{A}}, b \rangle] \approx []$
- 3. $\forall a_1, a_2 : A, b : B. [\langle a_1, b \rangle, \langle a_2, b \rangle] \approx [\langle a_1 * a_2, b \rangle]$
- 4. $\forall a : A. [\langle a, e_{\mathcal{B}} \rangle] \approx []$
- 5. $\forall a : A, b_1, b_2 : B. [\langle a, b_1 \rangle, \langle a, b_2 \rangle] \approx [\langle a, b_1 * b_2 \rangle]$

We use requirement 1 to impose a monoidal structure $\mathcal{A} \otimes \mathcal{B}$ on the quotient set $\frac{\mathbb{L}(A \times B)}{\sim}$:

Operator $\stackrel{\text{def}}{\approx} = \lambda q_1, q_2$. select \vec{m}_1 from q_1 in (select \vec{m}_2 from q_2 in $\frac{\vec{m}_1 + \vec{m}_2}{\approx}$ using.) using. Associativity Follows from associativity of ++ and the fact that quotienting only makes things more equal Identity Element = $\frac{\Box}{\approx}$

Identity Follows from identity of [] and the fact that quotienting only makes things more equal

Exercise 4. Show that, for any monoid C, there is a bijection between the set of multilinear homomorphisms from \mathcal{A} and \mathcal{B} to C and the set of monoid homomorphisms from $\mathcal{A} \otimes \mathcal{B}$ to C.

Proof. Given a function $f : A \times B \to C$ that is a multilinear homomorphism from \mathcal{A} and \mathcal{B} to \mathcal{C} , define $\hat{f} : \mathbb{L}(A \times B) \to C$ to be $\lambda \vec{m}$. Imap_f \vec{m} where map_f is the function that takes a list and produces a new list by applying f to each element. \hat{f} is a monoid homomorphism:

- $\bullet \ \hat{f}(\vec{m}_1 +\!\!\!+ \vec{m}_2) = \Pi \mathtt{map}_f(\vec{m}_1 +\!\!\!+ \vec{m}_2) = \Pi(\mathtt{map}_f \vec{m}_1 +\!\!\!+ \mathtt{map}_f \vec{m}_2) = (\Pi \mathtt{map}_f \vec{m}_1) * (\Pi \mathtt{map}_f \vec{m}_2) = \hat{f}(\vec{m}_1) * \hat{f}(\vec{m}_2) = \hat{f}(\vec{m}_1) + \hat{f}(\vec{m}_2) + \hat$
- $\hat{f}([]) = \Pi \operatorname{map}_{f}[] = \Pi[] = e_{\mathcal{C}}$

 \hat{f} has the property that it maps related lists to equal elements (skipping the additional rules for equivalence relations below):

- 1. Given $\vec{m}_1, \vec{m}_1', \vec{m}_2, \vec{m}_2' : \mathbb{L}(A \times B)$ such that $\vec{m}_1 \approx \vec{m}_1'$ and $\vec{m}_2 \approx \vec{m}_2'$ hold, by induction on the proof of \approx we can assume $\hat{f}(\vec{m}_1) = \hat{f}(\vec{m}_1')$ and $\hat{f}(\vec{m}_2) = \hat{f}(\vec{m}_2')$. $\hat{f}(m_1 + + m_2) = \hat{f}(\vec{m}_1) * \hat{f}(\vec{m}_2) = \hat{f}(\vec{m}_1') * \hat{f}(\vec{m}_2') = \hat{f}(m_1' + + m_2')$
- $2. \text{ Given } b:B, \ \widehat{f}([\langle e_{\mathcal{A}}, b \rangle]) = \Pi \mathtt{map}_{f}[\langle e_{\mathcal{A}}, b \rangle] = \Pi[f(e_{\mathcal{A}}, b)] = f(e_{\mathcal{A}}, b) = e_{\mathcal{C}} = \Pi[\] = \Pi \mathtt{map}_{f}[\] = \widehat{f}([\])$
- 3. Given $a_1, a_2 : A$ and b : B, $\hat{f}([\langle a_1, b \rangle, \langle a_2, b \rangle]) = \Pi \operatorname{map}_f[\langle a_1, b \rangle, \langle a_2, b \rangle] = \Pi[f(a_1, b), f(a_2, b)] = f(a_1, b) * f(a_2, b) = f(a_1 * a_2, b) = \Pi[f(a_1 * a_2, b)] = \Pi \operatorname{map}_f[\langle a_1 * a_2, b \rangle] = [\langle a_1 * a_2, b \rangle]$
- 4. Given $a: A, \hat{f}([\langle a, e_{\mathcal{B}} \rangle]) = \Pi \operatorname{map}_{f}[\langle a, e_{\mathcal{B}} \rangle] = \Pi[f(a, e_{\mathcal{B}})] = f(a, e_{\mathcal{B}}) = e_{\mathcal{C}} = \Pi[] = \Pi \operatorname{map}_{f}[] = \hat{f}([])$
- 5. Given a : A and $b_1, b_2 : B$, $\hat{f}([\langle a, b_1 \rangle, \langle a, b_2 \rangle]) = \Pi \operatorname{map}_f[\langle a, b_1 \rangle, \langle a, b_2 \rangle] = \Pi[f(a, b_1), f(a, b_2)] = f(a, b_1) * f(a, b_2) = f(a, b_1 * b_2) = \Pi[f(a, b_1 * b_2)] = \Pi \operatorname{map}_f[\langle a, b_1 * b_2 \rangle] = [\langle a, b_1 * b_2 \rangle]$

Consequently, we can define $\tilde{f}: \frac{\mathbb{L}(A \times B)}{\approx} \to C$ to be λq . select \vec{m} from q in $\operatorname{IImap}_f \vec{m}$ using (proof above). This is a monoid homomorphism because \hat{f} is a monoid homomorphism. In the other direction, given a function $g: \frac{\mathbb{L}(A \times B)}{\approx} \to C$ that is a monoid homomorphism from $\mathcal{A} \otimes \mathcal{B}$ to \mathcal{C} , define

In the other direction, given a function $g: \frac{\mathbb{L}(A \times B)}{\approx} \to C$ that is a monoid homomorphism from $\mathcal{A} \otimes \mathcal{B}$ to \mathcal{C} , define $\overline{g}: A \times B \to C$ to be $\lambda \langle a, b \rangle$. $g(\frac{[\langle a, b \rangle]}{\approx})$. \overline{g} is a multilinear monoid homomorphism from \mathcal{A} and \mathcal{B} to \mathcal{C} since related lists are in equal equivalence classes and g is a monoid homomorphism:

- Given $b: B, \, \bar{g}(e_{\mathcal{A}}, b) = g(\frac{[\langle e_{\mathcal{A}}, b \rangle]}{\approx}) = g(\frac{[]}{\approx}) = e_{\mathcal{C}}$
- Given $a_1, a_2 : A$ and b : B, $\bar{g}(a_1 * a_2, b) = g(\frac{[\langle a_1 * a_2, b \rangle]}{\approx}) = g(\frac{[\langle a_1, b \rangle, \langle a_2, b \rangle]}{\approx}) = g(\frac{[\langle a_1, b \rangle, \langle a_2, b \rangle]}{\approx}) = g(\frac{[\langle a_1, b$

• Given
$$a: A, \bar{g}(a, e_{\mathcal{B}}) = g(\frac{[(a, e_{\mathcal{B}})]}{\approx}) = g(\frac{[]}{\approx}) = e_{\mathcal{C}}$$

• Given a: A and $b_1, b_2: B, \bar{g}(a, b_1 * b_2) = g(\frac{[\langle a, b_1 * b_2 \rangle]}{\approx}) = g(\frac{[\langle a, b_1 \rangle, \langle a, b_2 \rangle]}{\approx}) = g(\frac{[\langle a, b_1 \rangle]}{\approx} \stackrel{\text{tr}}{\stackrel{\text{tr}}{\stackrel{\text{tr}}{\stackrel{\text{tr}}{\stackrel{\text{tr}}{\stackrel{\text{tr}}{\stackrel{\text{tr}}{\stackrel{\text{tr}}{\stackrel{\text{tr}}{\stackrel{\text{tr}}{\stackrel{\text{tr}}{\stackrel{\text{tr}}{\stackrel{\text{tr}}{\stackrel{\text{tr}}{\stackrel{\text{tr}}{\stackrel{\text{tr}}{\stackrel{\text{tr}}{\stackrel{\text{tr}}{\stackrel{\text{tr}}{\stackrel{\text{tr}}}\stackrel{\text{tr}}{\stackrel{\text{tr}}\stackrel{\text{tr}}{\stackrel{\text{tr}}\stackrel{\text{tr}}{\stackrel{\text{tr}}\stackrel{\text{tr}}{\stackrel{\text{tr}}\stackrel{\text{tr}}{\stackrel{\text{tr}}\stackrel{\text{tr}}{\stackrel{\text{tr}}\stackrel{\text{tr}}{\stackrel{\text{tr}}\stackrel{\text{tr}}{\stackrel{\text{tr}}\stackrel{\text{tr}}{\stackrel{\text{tr}}\stackrel{\text{tr}}{\stackrel{\text{tr}}\stackrel{\text{tr}}{\stackrel{\text{tr}}\stackrel{\text{tr}}{\stackrel{\text{tr}}\stackrel{\text{tr}}{\stackrel{\text{tr}}}\stackrel{\text{tr}}{\stackrel{\text{tr}}\stackrel{\text{tr}}{\stackrel{\text{tr}}\stackrel{\text{tr}}{\stackrel{\text{tr}}\stackrel{\text{tr}}{\stackrel{\text{tr}}}\stackrel{\text{tr}}{\stackrel{\text{tr}}\stackrel{\text{tr}}{\stackrel{\text{tr}}}\stackrel{\text{tr}}{\stackrel{\text{tr}}\stackrel{\text{tr}}{\stackrel{\text{tr}}\stackrel{\text{tr}}{\stackrel{\text{tr}}}\stackrel{\text{tr}}{\stackrel{\text{tr}}\stackrel{\text{tr}}{\stackrel{\text{tr}}}\stackrel{\text{tr}}{\stackrel{\text{tr}}}\stackrel{\text{tr}}{\stackrel{\text{tr}}}\stackrel{\text{tr}}{\stackrel{\text{tr}}\stackrel{\text{tr}}}\stackrel{\text{tr}}\stackrel{\text{tr}}}{\stackrel{\text{tr}}\stackrel{\text{tr}}}\stackrel{\text{tr}}}\stackrel{\text{tr}}\stackrel{\text{tr}}}\stackrel{\text{tr}}\stackrel{\text{tr}}}\stackrel{\text{tr}}\stackrel{\text{tr}}}\stackrel{\text{tr}}\stackrel{\text{tr}}}\stackrel{\text{tr}}\stackrel{\text{tr}}}\stackrel{\text{tr}}\stackrel{\text{tr}}}\stackrel{\text{tr}}\stackrel{\text{tr}}}\stackrel{\text{tr}}\stackrel{\text{tr}}}\stackrel{\text{tr}}}\stackrel{\text{tr}}\stackrel{\text{tr}}}\stackrel{\text{tr}}\stackrel{\text{tr}}}\stackrel{\text{tr}}\stackrel{\text{tr}}}\stackrel{\text{tr}}\stackrel{\text{tr}}}\stackrel{\text{tr}}\stackrel{\text{tr}}}\stackrel{\text{tr}}\stackrel{\text{tr}}}\stackrel{\text{tr}}\stackrel{\text{tr}}}\stackrel{\text{tr}}\stackrel{\text{tr}}}\stackrel{\text{tr}}\stackrel{\text{tr}}}\stackrel{\text{tr}}\stackrel{\text{tr}}\stackrel{\text{tr}}}\stackrel{\text{tr}}\stackrel{\text{tr}}\stackrel{\text{tr}}}\stackrel{\text{tr}}\stackrel{\text{tr}}\stackrel{\text{tr}}}\stackrel{\text{tr}}\stackrel{\text{tr}}}\stackrel{\text{tr}}\stackrel{\text{tr}}\stackrel{\text{tr}}}\stackrel{\text{tr}}}\stackrel{\text{tr}}\stackrel{\text{tr}}}\stackrel{\text{tr}}\stackrel{\text{tr}}}\stackrel{\text{tr}}\stackrel{\text{tr}}}\stackrel{\text{tr}}\stackrel{\text{tr}}}\stackrel{\text{tr}}\stackrel{\text{tr}}\stackrel{\text{tr}}}\stackrel{\text{tr}}\stackrel{\text{tr}}}\stackrel{\text{tr}}\stackrel{\text{tr}}}\stackrel{\text{tr}}\stackrel{\text{tr}}}\stackrel{\text{tr}}}\stackrel{\text{tr}}}\stackrel{\text{tr}}}\stackrel{\text{tr}}}\stackrel{\text{tr}}\stackrel{\text{tr}}}\stackrel{\text{tr}}}\stackrel{\text{tr}}\stackrel{\text{tr}}}\stackrel{\text{tr}}}\stackrel{\text{tr}}\stackrel{\text{tr}}}\stackrel{\text{tr}}\stackrel{\text{tr}}}\stackrel{\text{tr}}\stackrel{\text{tr}}\stackrel{\text{tr}}\stackrel{\text{tr}}\stackrel{\text{tr}}\stackrel{\text{tr}}\stackrel{\text{tr}}\stackrel{\text{tr}}\stackrel{\text{tr}}\stackrel$

Given a function $f : A \times B \rightarrow C$ that is a multilinear homomorphism from \mathcal{A} and \mathcal{B} to \mathcal{C} , we have the following equality for all a : A and b : B:

$$\bar{\tilde{f}}(a,b) = \tilde{f}(\frac{[\langle a,b\rangle]}{\approx}) = \texttt{select} \; \vec{m} \; \texttt{from} \; \frac{[\langle a,b\rangle]}{\approx} \; \texttt{in} \; \texttt{Imap}_f \vec{m} \; \texttt{using} \; \textbf{.} = \texttt{Imap}_f[\langle a,b\rangle] = \Pi[f(a,b)] = f(a,b)$$

In the other direction, given a function $g: \frac{\mathbb{L}(A \times B)}{\approx} \to C$ that is a monoid homomorphism from $\mathcal{A} \otimes \mathcal{B}$ to \mathcal{C} , we have the following equality for all $q: \frac{\mathbb{L}(A \times B)}{\approx}$:

$$\begin{split} g(q) &= \texttt{select} \; \vec{m} \; \texttt{from} \; q \; \texttt{in} \; g(\frac{\vec{m}}{\approx}) \; \texttt{using.} \\ &= \texttt{select} \; \Sigma_i[\langle a_i, b_i \rangle] \; \texttt{from} \; q \; \texttt{in} \; g(\frac{\Sigma_i[\langle a_i, b_i \rangle]}{\approx}) \; \texttt{using.} \\ &= \texttt{select} \; \Sigma_i[\langle a_i, b_i \rangle] \; \texttt{from} \; q \; \texttt{in} \; \Pi_i g(\frac{[\langle a_i, b_i \rangle]}{\approx}) \; \texttt{using.} \\ &= \texttt{select} \; \Sigma_i[\langle a_i, b_i \rangle] \; \texttt{from} \; q \; \texttt{in} \; \Pi \Sigma_i g(\frac{[\langle a_i, b_i \rangle]}{\approx}) \; \texttt{using.} \\ &= \texttt{select} \; \Sigma_i[\langle a_i, b_i \rangle] \; \texttt{from} \; q \; \texttt{in} \; \Pi \texttt{map}_{\lambda\langle a, b\rangle \cdot \; g(\frac{[\langle a, b\rangle]}{\approx})} \Sigma_i[\langle a_i, b_i \rangle] \; \texttt{using.} \\ &= \texttt{select} \; \vec{\Sigma}_i[\langle a_i, b_i \rangle] \; \texttt{from} \; q \; \texttt{in} \; \Pi \texttt{map}_{\lambda\langle a, b\rangle \cdot \; g(\frac{[\langle a, b\rangle]}{\approx})} \vec{m} \; \texttt{using.} \\ &= \texttt{select} \; \vec{m} \; \texttt{from} \; q \; \texttt{in} \; \Pi \texttt{map}_{\lambda\langle a, b\rangle \cdot \; g(\frac{[\langle a, b\rangle]}{\approx})} \vec{m} \; \texttt{using.} \\ &= \texttt{select} \; \vec{m} \; \texttt{from} \; q \; \texttt{in} \; \Pi \texttt{map}_{\tilde{g}} \vec{m} \; \texttt{using.} \\ &= \texttt{select} \; \vec{m} \; \texttt{from} \; q \; \texttt{in} \; \Pi \texttt{map}_{\tilde{g}} \vec{m} \; \texttt{using.} \\ &= \tilde{g}(q) \end{split}$$