Limits

Ross Tate

October 8, 2014

Exercise 1. Prove that for any object \mathcal{A} of any category \mathbf{C}, the object $\mathcal{A} \& 丁$ (if it exists) is isomoprhic to \mathcal{A}.
Proof. Let $f: \mathcal{A} \rightarrow \mathcal{A} \& \top$ be defined as $\left\langle i d_{\mathfrak{A}},\langle \rangle\right\rangle$. Let $\mathcal{g}: \mathcal{A} \& \top \rightarrow \mathcal{A}$ be defined as $\pi_{\mathfrak{A}} \cdot f ; \mathcal{g}=\left\langle i d_{\mathcal{A}},\langle \rangle\right\rangle ; \pi_{\mathfrak{A}}=i d_{\mathcal{A}}$ by the nature of projections, proving one direction. $\mathcal{g} ; f ; \pi_{\top}: \mathcal{A} \& \top \rightarrow \top$ equals $i d_{\mathcal{A} \& \top} ; \pi_{\top}: \mathcal{A} \& \top \rightarrow \top$ since all morphisms from the same domain to T are equal by the nature of terminal objects. Also, $\mathcal{g} ; f ; \pi_{\mathfrak{A}}=\pi_{\mathcal{A}} ;\left\langle i d_{\mathfrak{A}},\langle \rangle\right\rangle ; \pi_{\mathcal{A}}=$ $\pi_{\mathcal{A}} ; i d_{\mathcal{A}}=\pi_{\mathcal{A}}=i d_{\mathcal{A} \& T} ; \pi_{\mathcal{A}}$. Thus, since all morphisms to a product that behave the same after being followed by both projections must be equal, we have $\mathfrak{g} ; f=i d_{\mathcal{A} \& T}$. So, f and \mathcal{g} are inverses of each other, making \mathcal{A} isomorphic to $\mathcal{A} \& T$.
Exercise 2. Prove that, in any 2-category, if morphisms $\mathcal{C}_{1} \xrightarrow{f_{1}} \mathcal{C}_{2}$ and $\mathcal{C}_{2} \xrightarrow{f_{2}} \mathcal{C}_{3}$ are both left adjoints, then their composition $f_{1} ; f_{2}$ is also a left adjoint.
Proof. Let $\left\langle\mathcal{C}_{1}, \mathcal{C}_{2}, f_{1}, g_{1}, \eta_{1}, \varepsilon_{1}, \mathfrak{f}_{1}, \mathfrak{g}_{1}\right\rangle$ and $\left\langle\mathcal{C}_{2}, \mathcal{C}_{3}, f_{2}, g_{2}, \eta_{2}, \varepsilon_{2}, \mathfrak{f}_{2}, \mathfrak{g}_{2}\right\rangle$ be some adjunctions that f_{1} and f_{2} are the left adjoints of. Then $\left\langle\mathcal{C}_{1}, \mathcal{C}_{3}, f_{1} ; f_{2}, g_{2} ; g_{1}, \eta, \varepsilon, \mathfrak{f}, \mathfrak{g}\right\rangle$ is an adjuction that $f_{1} ; f_{2}$ is the left adjoint of, where $\eta, \varepsilon, \mathfrak{f}$, and \mathfrak{g} are defined as follows:

equals

Exercise 3. The monoid $\mathcal{A} \& \mathcal{B}$ is commutative if both \mathcal{A} and \mathcal{B} are commutative, and in that case is (with the appropriate projection homomorphisms) also the product of \mathcal{A} and \mathcal{B} in CommMon. Prove that there are morphisms $\kappa_{\mathcal{A}}$ and $\kappa_{\mathcal{B}}$ demonstrating that $\mathcal{A} \& \mathcal{B}$ is also the coproduct of \mathcal{A} and \mathcal{B} in CommMon. That is, prove that CommMon has biproducts, meaning it has products and coproducts and they coincide on objects.

Proof. Define the underlying function of $\kappa_{\mathcal{A}}: \mathcal{A} \rightarrow \mathcal{A} \& \mathcal{B}$ to be $\lambda a .\left\langle a, e_{\mathcal{B}}\right\rangle$. This clearly preserves identity and multilplication, making $\kappa_{\mathcal{A}}$ a monoid homomorphism. Similarly, $\kappa_{\mathcal{B}}=\left\langle\lambda b .\left\langle e_{\mathcal{A}}, b\right\rangle, ., .,\right\rangle$.

Given a monoid \mathcal{C} and monoid homomorphisms $f_{\mathcal{A}}: \mathcal{A} \rightarrow \mathcal{C}$ and $f_{\mathcal{B}}: \mathcal{B} \rightarrow \mathcal{C}$, define the underlying function of $[f]: \mathcal{A} \& \mathcal{B} \rightarrow \mathcal{C}$ to be $\lambda\langle a, b\rangle . f_{\mathcal{A}}(a)+\mathcal{C} f_{\mathcal{B}}(b)$. We have to show this is a monoid morphism. It distributes since $[f]\left(\left\langle a_{1}, b_{1}\right\rangle+\mathcal{A \& \mathcal { B }}\left\langle a_{2}, b_{2}\right\rangle\right)=[f]\left(\left\langle a_{1}+_{\mathcal{A}} a_{2}, b_{1}+_{\mathcal{B}} b_{2}\right\rangle\right)=f_{\mathcal{A}}\left(a_{1}+_{\mathcal{A}} a_{2}\right)+\mathcal{C} f_{\mathcal{B}}\left(b_{1}+\mathcal{B} b_{2}\right)=f_{\mathcal{A}}\left(a_{1}\right)+\mathcal{C} f_{\mathcal{A}}\left(a_{2}\right)+\mathcal{C}$ $f_{\mathcal{B}}\left(b_{1}\right)+\mathcal{C} f_{\mathcal{B}}\left(b_{2}\right)=f_{\mathcal{A}}\left(a_{1}\right)+\mathcal{C} f_{\mathcal{B}}\left(b_{1}\right)+\mathcal{C} f_{\mathcal{A}}\left(a_{2}\right)+\mathcal{C} f_{\mathcal{B}}\left(b_{2}\right)=[f]\left(\left\langle a_{1}, b_{1}\right\rangle\right)+\mathcal{C}[f]\left(\left\langle a_{2}, b_{2}\right\rangle\right)$. It preserves identity since $[f]\left(e_{\mathcal{A} \& \mathcal{B}}\right)=[f]\left(\left\langle e_{\mathcal{A}}, e_{\mathcal{B}}\right\rangle\right)=f_{\mathcal{A}}\left(e_{\mathcal{A}}\right)+\mathcal{C} f_{\mathcal{B}}\left(e_{\mathcal{B}}\right)=e_{\mathcal{C}}+e_{\mathcal{C}}=e_{\mathcal{C}}$.

Given an $a: A,[f]\left(\kappa_{\mathcal{A}}(a)\right)=[f]\left(\left\langle a, e_{\mathcal{B}}\right\rangle\right)=f_{\mathcal{A}}(a)+f_{\mathcal{B}}\left(e_{\mathcal{B}}\right)=f_{\mathcal{A}}(a)+e_{\mathcal{C}}=f_{\mathcal{A}}(a)$, so $\kappa_{\mathcal{A}} ;[f]$ equals $f_{\mathcal{A}}$. Similarly, $\kappa_{\mathcal{B}} ;[f]$ equals $f_{\mathcal{B}}$.

Lastly, suppose $\mathfrak{g}: \mathcal{A} \& \mathcal{B} \rightarrow \mathcal{C}$ also has the property that $\kappa_{\mathcal{A}} ; \mathcal{g}$ equals $f_{\mathcal{A}}$ and $\kappa_{\mathcal{B}} ; \boldsymbol{g}$ equals $f_{\mathcal{B}}$. To be a monoid homomorphism, since for any $a: A$ and $b: B$ the $\operatorname{sum}\left\langle a, e_{\mathcal{B}}\right\rangle+\mathcal{A}_{\mathcal{B}}\left\langle e_{\mathcal{A}}, b\right\rangle$ equals $\langle a, b\rangle$, we know that $g(\langle a, b\rangle)=g\left(\left\langle a, e_{\mathcal{B}}\right\rangle+\mathcal{A} \& \mathcal{B}^{\mathcal{B}}\left\langle e_{\mathcal{A}}, b\right\rangle\right)=g\left(\kappa_{\mathcal{A}}(a)+_{\mathcal{A} \& \mathcal{B}} \kappa_{\mathcal{B}}(b)\right)=g\left(\kappa_{\mathcal{A}}(a)\right)+c g\left(\kappa_{\mathcal{B}}(b)\right)=f_{\mathcal{A}}(a)+\mathcal{C} f_{\mathcal{B}}(b)=[f](\langle a, b\rangle)$. Thus, any such g must equal $[f]$, proving uniqueness.

