Adjunctions

Ross Tate

October 5, 2014

Exercise 1. Prove that the inclusion functor $\mathbf{Set} \stackrel{I}{\hookrightarrow} \mathbf{Rel}$ has a right adjoint. You may use any of the equivalent definitions of adjunction. For clarification, I is the functor mapping each set X (an object of \mathbf{Set}) to the set X (also an object of \mathbf{Rel}) and each function $X \to Y$ (a morphism of \mathbf{Set}) to the relation $\lambda \langle x, y \rangle$. f(x) = y (a morphism of \mathbf{Rel}).

Proof. There is a functor \mathbb{P} : **Rel** \rightarrow **Set** mapping each set X to the set $\mathbb{P}X$ and each relation $R: X \times Y \rightarrow Prop$ to the function $\lambda \vec{x}$. $\{y: Y \mid \exists x \in \vec{x}. x R y\}$. The identity relation $\lambda \langle x_1, x_2 \rangle . x_1 = x_2$ gets mapped to the function $\lambda \vec{x}$. $\{x_2: X \mid \exists x_1 \in \vec{x}. x_1 = x_2\}$ which is simply the identity function. The composition relation $\lambda \langle x, z \rangle$. $\exists y: Y. x R_1 y \wedge y R_2 z$ gets mapped to the function $\lambda \vec{x}. \{z: Z \mid \exists x \in \vec{x}. \exists y: Y. x R_1 y \wedge y R_2 z\}$ which equals $\lambda \vec{x}. \{z: Z \mid \exists y \in \{y: Y \mid \exists x \in \vec{x}. x R_1 y\}. y R_2 z\}$, proving distributivity.

Given a **Rel**-object Y, define the **Rel**-morphism $\varepsilon_Y : I(\mathbb{P}(Y)) \to Y$ to be the binary relation $\lambda\langle \vec{y}, y \rangle$. $y \in \vec{y}$. Given another **Rel**-morphism from some I(X) to Y, i.e. a binary relation $R : X \times Y \to \operatorname{Prop}$, the unique corresponding **Set**-morphism from X to $\mathbb{P}(Y)$ is the function λx . $\{y : Y \mid x R y\}$. The **Rel**-composition $I(\lambda x. \{y : Y \mid x R y\}); (\lambda\langle \vec{y}, y \rangle. y \in \vec{y})$ is by definition the binary relation $\lambda\langle x, y \rangle$. $\exists \vec{y} : \mathbb{P}(Y)$. $\{y : Y \mid x R y\} = \vec{y} \wedge y \in \vec{y},$ which is equivalent to simply R. Furthermore, for any function $f : X \to \mathbb{P}Y$, the composition $\lambda\langle x, y \rangle$. $\exists \vec{y} : \mathbb{P}Y$. $f(x) = \vec{y} \wedge y \in \vec{y}$ is equivalent to $\lambda\langle x, y \rangle$. $y \in f(x)$, which is equivalent to R if and only if $f(x) = \{y : Y \mid \exists x : X. x R y\}$, making the function corresponding to R unique.

Exercise 2. There is a functor from 1 to **Set** picking out the empty set, and another functor from 1 to **Set** picking out the singleton set. One is the left adjoint to the unique functor from **Set** to 1, and the other is the right adjoint to the unique functor from **Set** to 1. Determine and prove which is which.

Proof. The functor $F : \mathbf{1} \to \mathbf{Set}$ picking out the empty set is the left adjoint to the unique functor $\langle \rangle$ from **Set** to **1** (whose only object we call \star). For any $X : \mathbf{Set}$ and $\star : \mathbf{1}$, both $M_{\mathbf{Set}}(F(\star), X)$ and $M_{\mathbf{1}}(\star, \langle \rangle(X))$ have only one element, making them isomorphic. Furthermore, since **1** has only one morphism, this isomorphism is guaranteed to be natural, making this an adjunction.

The functor $G : \mathbf{1} \to \mathbf{Set}$ picking out the singleton set is the right adjoint to the unique functor $\langle \rangle$ from **Set** to **1** (whose only object we call \star). For any $X : \mathbf{Set}$ and $\star : \mathbf{1}$, both $M_{\mathbf{1}}(\langle \rangle(X), \star)$ and $M_{\mathbf{Set}}(X, G(\star))$ have only one element, making them isomorphic. Furthermore, since **1** has only one morphism, this isomorphism is guaranteed to be natural, making this an adjunction.

Exercise 3. $\mathbb{N} : \mathbf{1} \to \mathbf{Set}$ maps the only object of $\mathbf{1}$ to the set \mathbb{N} . repeat is the natural transformation from \mathbb{N} to $\mathbb{N} ; \mathbb{L}$ (i.e. $\mathbb{L}(\mathbb{N})$) mapping the sole object of $\mathbf{1}$ to the function mapping n to the length-n list $[n, \ldots, n]$. sum is the natural transformation from $\mathbb{N} ; \mathbb{L}$ to \mathbb{N} mapping the sole object of $\mathbf{1}$ to the function mapping a list of numbers and returns its sum.

The string diagram to the right denotes a natural transformation from the functor $\mathbb{N} : \mathbf{1} \to \mathbf{Set}$ to itself (\mathbb{N} maps the only object of $\mathbf{1}$ to the set \mathbb{N}). In particular, this means it describes a function from \mathbb{N} to \mathbb{N} . Determine what that function is in terms of basic arithmetic. (No proof necessary; the purpose of this is to learn the notation.)

Proof. The function is $\lambda n. n^3$. The program described by the diagram is $\lambda n. \operatorname{sum}(\operatorname{flatten}(\operatorname{map}_{\operatorname{repeat}}(\operatorname{repeat}(n))))$.