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Exercise 1. Prove that the inclusion functor Set
I
↪−� Rel has a right adjoint. You may use any of the equivalent

definitions of adjunction. For clarification, I is the functor mapping each set X (an object of Set) to the set X (also
an object of Rel) and each function X A Y (a morphism of Set) to the relation λ〈x, y〉. f(x) = y (a morphism of
Rel).

Proof. There is a functor P : Rel → Set mapping each set X to the set PX and each relation R : X × Y A Prop
to the function λ~x. {y : Y | ∃x ∈ ~x. x R y}. The identity relation λ〈x1, x2〉.x1 = x2 gets mapped to the function
λ~x. {x2 : X | ∃x1 ∈ ~x. x1 = x2} which is simply the identity function. The composition relation λ〈x, z〉. ∃y :
Y. x R1 y ∧ y R2 z gets mapped to the function λ~x. {z : Z | ∃x ∈ ~x. ∃y : Y. x R1 y ∧ y R2 z} which equals
λ~x. {z : Z | ∃y ∈ {y : Y | ∃x ∈ ~x. x R1 y}. y R2 z}, proving distributivity.

Given a Rel-object Y , define the Rel-morphism εY : I(P(Y ))→ Y to be the binary relation λ〈~y, y〉. y ∈ ~y. Given
another Rel-morphism from some I(X) to Y , i.e. a binary relation R : X × Y A Prop, the unique corresponding
Set-morphism from X to P(Y ) is the function λx. {y : Y | x R y}. The Rel-composition I(λx. {y : Y | x R
y}) ;(λ〈~y, y〉. y ∈ ~y) is by definition the binary relation λ〈x, y〉. ∃~y : P(Y ). {y : Y | x R y} = ~y ∧ y ∈ ~y, which is
equivalent to simply R. Furthermore, for any function f : X A PY , the composition λ〈x, y〉. ∃~y : PY. f(x) = ~y∧y ∈ ~y
is equivalent to λ〈x, y〉. y ∈ f(x), which is equivalent to R if and only if f(x) = {y : Y | ∃x : X. x R y}, making the
function corresponding to R unique.
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Exercise 2. There is a functor from 1 to Set picking out the empty set,
and another functor from 1 to Set picking out the singleton set. One is the
left adjoint to the unique functor from Set to 1, and the other is the right
adjoint to the unique functor from Set to 1. Determine and prove which
is which.

Proof. The functor F : 1→ Set picking out the empty set is the left adjoint
to the unique functor 〈〉 from Set to 1 (whose only object we call ?). For
any X : Set and ? : 1, both MSet(F (?), X) and M1(?, 〈〉(X)) have only
one element, making them isomorphic. Furthermore, since 1 has only one
morphism, this isomorphism is guaranteed to be natural, making this an
adjunction.

The functor G : 1 → Set picking out the singleton set is the right
adjoint to the unique functor 〈〉 from Set to 1 (whose only object we call
?). For any X : Set and ? : 1, both M1(〈〉(X), ?) and MSet(X,G(?)) have
only one element, making them isomorphic. Furthermore, since 1 has only
one morphism, this isomorphism is guaranteed to be natural, making this
an adjunction.

Exercise 3. N : 1→ Set maps the only object of 1 to the set N. repeat

is the natural transformation from N to N ;L (i.e. L(N)) mapping the sole
object of 1 to the function mapping n to the length-n list [n, . . . , n]. sum is
the natural transformation from N ;L to N mapping the sole object of 1 to
the function mapping a list of numbers and returns its sum.

The string diagram to the right denotes a natural transformation from
the functor N : 1→ Set to itself (N maps the only object of 1 to the set N).
In particular, this means it describes a function from N to N. Determine
what that function is in terms of basic arithmetic. (No proof necessary; the
purpose of this is to learn the notation.)

Proof. The function is λn. n3. The program described by the diagram is λn. sum(flatten(maprepeat(repeat(n)))).
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