Adjunctions

Ross Tate

October 5, 2014

Exercise 1. Prove that the inclusion functor Set $\stackrel{I}{\hookrightarrow}$ Rel has a right adjoint. You may use any of the equivalent definitions of adjunction. For clarification, I is the functor mapping each set X (an object of Set) to the set X (also an object of Rel) and each function $X \rightarrow Y$ (a morphism of Set) to the relation $\lambda\langle x, y\rangle . f(x)=y$ (a morphism of Rel).

Proof. There is a functor $\mathbb{P}:$ Rel \rightarrow Set mapping each set X to the set $\mathbb{P} X$ and each relation $R: X \times Y \rightarrow$ Prop to the function $\lambda \vec{x} .\{y: Y \mid \exists x \in \vec{x} . x R y\}$. The identity relation $\lambda\left\langle x_{1}, x_{2}\right\rangle . x_{1}=x_{2}$ gets mapped to the function $\lambda \vec{x} .\left\{x_{2}: X \mid \exists x_{1} \in \vec{x} . x_{1}=x_{2}\right\}$ which is simply the identity function. The composition relation $\lambda\langle x, z\rangle$. $\exists y$: Y. $x R_{1} y \wedge y R_{2} z$ gets mapped to the function $\lambda \vec{x}$. $\left\{z: Z \mid \exists x \in \vec{x}\right.$. $\exists y: Y$. $\left.x R_{1} y \wedge y R_{2} z\right\}$ which equals $\lambda \vec{x} .\left\{z: Z \mid \exists y \in\left\{y: Y \mid \exists x \in \vec{x} . x R_{1} y\right\} . y R_{2} z\right\}$, proving distributivity.

Given a Rel-object Y, define the Rel-morphism $\varepsilon_{Y}: I(\mathbb{P}(Y)) \rightarrow Y$ to be the binary relation $\lambda\langle\vec{y}, y\rangle . y \in \vec{y}$. Given another Rel-morphism from some $I(X)$ to Y, i.e. a binary relation $R: X \times Y \rightarrow$ Prop, the unique corresponding Set-morphism from X to $\mathbb{P}(Y)$ is the function λx. $\{y: Y \mid x R y\}$. The Rel-composition $I(\lambda x .\{y: Y \mid x R$ $y\}) ;(\lambda\langle\vec{y}, y\rangle . y \in \vec{y})$ is by definition the binary relation $\lambda\langle x, y\rangle . \exists \vec{y}: \mathbb{P}(Y) .\{y: Y \mid x R y\}=\vec{y} \wedge y \in \vec{y}$, which is equivalent to simply R. Furthermore, for any function $f: X \rightarrow \mathbb{P} Y$, the composition $\lambda\langle x, y\rangle . \exists \vec{y}: \mathbb{P} Y . f(x)=\vec{y} \wedge y \in \vec{y}$ is equivalent to $\lambda\langle x, y\rangle . y \in f(x)$, which is equivalent to R if and only if $f(x)=\{y: Y \mid \exists x: X . x R y\}$, making the function corresponding to R unique.

Exercise 2. There is a functor from 1 to Set picking out the empty set, and another functor from 1 to Set picking out the singleton set. One is the left adjoint to the unique functor from Set to 1, and the other is the right adjoint to the unique functor from Set to 1. Determine and prove which is which.

Proof. The functor $F: \mathbf{1} \rightarrow$ Set picking out the empty set is the left adjoint to the unique functor \rangle from Set to $\mathbf{1}$ (whose only object we call \star). For any $X:$ Set and $\star: \mathbf{1}$, both $M_{\text {Set }}(F(\star), X)$ and $M_{\mathbf{1}}(\star,\langle \rangle(X))$ have only one element, making them isomorphic. Furthermore, since 1 has only one morphism, this isomorphism is guaranteed to be natural, making this an adjunction.

The functor $G: \mathbf{1} \rightarrow$ Set picking out the singleton set is the right adjoint to the unique functor \rangle from Set to $\mathbf{1}$ (whose only object we call $\star)$. For any $X:$ Set and $\star: \mathbf{1}$, both $M_{\mathbf{1}}(\langle \rangle(X), \star)$ and $M_{\text {Set }}(X, G(\star))$ have only one element, making them isomorphic. Furthermore, since $\mathbf{1}$ has only one morphism, this isomorphism is guaranteed to be natural, making this an adjunction.

Exercise 3. $\mathbb{N}: \mathbf{1} \rightarrow$ Set maps the only object of $\mathbf{1}$ to the set \mathbb{N}. repeat is the natural transformation from \mathbb{N} to $\mathbb{N} ; \mathbb{L}$ (i.e. $\mathbb{L}(\mathbb{N})$) mapping the sole object of $\mathbf{1}$ to the function mapping n to the length- n list $[n, \ldots, n]$. sum is the natural transformation from $\mathbb{N} ; \mathbb{L}$ to \mathbb{N} mapping the sole object of $\mathbf{1}$ to the function mapping a list of numbers and returns its sum.

The string diagram to the right denotes a natural transformation from
 the functor $\mathbb{N}: \mathbf{1} \rightarrow$ Set to itself (\mathbb{N} maps the only object of $\mathbf{1}$ to the set \mathbb{N}). In particular, this means it describes a function from \mathbb{N} to \mathbb{N}. Determine what that function is in terms of basic arithmetic. (No proof necessary; the purpose of this is to learn the notation.)

Proof. The function is $\lambda n . n^{3}$. The program described by the diagram is λn. sum $\left(f l a t t e n\left(\operatorname{map}_{\text {repeat }}(\operatorname{repeat}(n))\right)\right)$.

