Transpositions

Ross Tate

September 22, 2014

Definition (G-Structured Arrow for a functor $G: \mathbf{D} \rightarrow \mathbf{C}$ and an object $\mathcal{C}: \mathbf{C}$). An object $\mathcal{D}: \mathbf{D}$ and a morphism $f: \mathcal{C} \rightarrow G(\mathcal{D})$. A morphism of G-structured arrows from $\mathcal{C} \xrightarrow{f_{1}} G\left(\mathcal{D}_{1}\right)$ to $\mathcal{C} \xrightarrow{f_{2}} G\left(\mathcal{D}_{2}\right)$ is a morphism $\mathcal{D}_{1} \xrightarrow{d} \mathcal{D}_{2}$ such that $f_{1} ; G(d)$ equals f_{2}.
Definition (F-Costructured Arrow for a functor $F: \mathbf{C} \rightarrow \mathbf{D}$ and an object $\mathcal{D}: \mathbf{D}$). An object $\mathcal{C}: \mathbf{C}$ and a morphism $g: F(\mathcal{C}) \rightarrow \mathcal{D}$. A morphism of F-structured arrows from $F\left(\mathcal{C}_{1}\right) \xrightarrow{g_{1}} \mathcal{D}$ to $F\left(\mathcal{C}_{2}\right) \xrightarrow{g_{2}} \mathcal{D}$ is a morphism $\mathcal{C}_{1} \xrightarrow{c} \mathcal{C}_{2}$ such that $F(c) ; g_{2}$ equals g_{1}.
Definition (Adjunction (via Universal (Co-)Structured Arrows)). A pair of functors $F: \mathbf{C} \rightarrow \mathbf{D}$ and $G: \mathbf{D} \rightarrow \mathbf{C}$ with either (the following two conditions are equivalent)

- for each object $\mathcal{C}: \mathbf{C}$ a morphism $\mathcal{C} \xrightarrow{\eta_{C}} G(F(\mathcal{C}))$ with the property that for any object $\mathcal{D}: \mathbf{D}$ and morphism $f: \mathcal{C} \rightarrow G(\mathcal{D})$ there exists a unique morphism $f^{\leftarrow}: F(\mathcal{C}) \rightarrow \mathcal{D}$ such that $\eta_{\mathcal{C}} ; G\left(f^{\leftarrow}\right)$ equals f
- for each object $\mathcal{D}: \mathbf{D}$ a morphism $F(G(\mathcal{D})) \xrightarrow{\varepsilon_{\mathcal{D}}} \mathcal{D}$ with the property that for any object $\mathcal{C}: \mathbf{C}$ and morphism $\mathcal{g}: F(\mathcal{C}) \rightarrow \mathcal{D}$ there exists a unique morphism $\boldsymbol{g} \rightarrow \boldsymbol{\mathcal { C }} \rightarrow G(\mathcal{D})$ such that $F\left(g^{\rightarrow}\right) ; \varepsilon_{\mathcal{D}}$ equals \mathcal{g}
Remark. η is called the unit. ε is called the counit.
Definition (Adjunction (via Transposition)). A pair of functors $F: \mathbf{C} \rightarrow \mathbf{D}$ and $G: \mathbf{D} \rightarrow \mathbf{C}$ with a bijection $\forall C: \mathbf{C}, \mathcal{D}: \mathbf{D} \cdot(F \mathcal{C} \rightarrow \mathcal{D}) \underset{\bullet \leftarrow}{\stackrel{\bullet}{\rightleftarrows}}(\mathcal{C} \rightarrow G \mathcal{D})$ that is natural with respect to the quantified \mathcal{C} and \mathcal{D}, meaning the following holds: $\forall F \mathcal{C}_{2} \xrightarrow{g} \mathcal{D}_{1}: \mathbf{D}, \mathcal{C}_{1} \xrightarrow{c} \mathcal{C}_{2}: \mathbf{C}, \mathcal{D}_{1} \xrightarrow{d} \mathcal{D}_{2} .(F c ; \mathcal{g} ; d) \rightarrow=c ; g^{\rightarrow} ; G d$, or equivalently $\forall \mathcal{C}_{2} \xrightarrow{f} G \mathcal{D}_{1}$: $\mathbf{C}, \mathcal{C}_{1} \xrightarrow{c} \mathcal{C}_{2}: \mathbf{C}, \mathcal{D}_{1} \xrightarrow{d} \mathcal{D}_{2} .(c ; f ; G d)^{\leftarrow}=F c ; f^{\leftarrow} ; d$.
Exercise 1. Prove that the above two definitions of adjunction are equivalent (i.e. there is a bijection between them).
Definition (Left/Right Adjoint). Given an adjuntion with F and G as above, F is called the left adjoint and G is called the right adjoint. A functor is called a left/right adjoint if it is the left/right adjoint of some adjunction.
Remark. The reason F is the left whereas G is the right is that the isomoprhism is between arrows with F applied to the domain (i.e. to the left of \rightarrow) and arrows with G applied to the codomain (i.e. to the right of \rightarrow). We use \rightarrow because changes morphisms from the left form into the right form, and \leftarrow does the reverse.

Exercise 2. Suppose functors F and G have two ways to instantiate η, ε, or the isomorphism. Prove that these two instantiations must be isomoprhic to each other according to the appropriate notion of isomorphism.
Notation. $F \dashv G$ means that F and G are the left and right adjoints of some adjunction.
Example. A subcategory $\mathbf{S} \stackrel{I}{\longleftrightarrow} \mathbf{C}$ is reflective precisely when I is a right adjoint. The left adjoint is R. The unit is the reflection arrows.
Example. The functor $F:$ Set \rightarrow Mon mapping a set X to $(\mathbb{L} X)_{++}$is left adjoint to the underlying functor $U:$ Mon \rightarrow Set.

Example. The functor $F: \mathbf{S e t} \rightarrow \mathbf{A l g}(2,0)$ mapping a set X to the algebra of expressions with a binary operation, a nullary operation, and all free variables in X, and mapping functions f to the algebra homomorphism simply using f to rename variables in expressions, is left adjoint to the underlying functor $U: \mathbf{A} \boldsymbol{\operatorname { l g }}(2,0) \rightarrow \mathbf{S e t}$. If θ is a function from X to elements of some algebra, then f^{\leftarrow} is the algebra homomorphism mapping expressions to their evaluation in that algebra using the valuation θ for variables.
Remark. In general, a left adjoint to an underlying functor is called a free functor. Consequently, $(\mathbb{L} X)_{++}$is called the free monoid of X.
Exercise 3. Show that the inclusion functor Set \hookrightarrow Rel has a right adjoint. This means Set is a coreflective subcategory of Rel.

