Natural Transformations

Ross Tate

September 18, 2014

Definition (Natural Transformation from $F: \mathbf{C} \rightarrow \mathbf{D}$ to $G: \mathbf{C} \rightarrow \mathbf{D})$. A tuple $\langle\alpha, \mathfrak{n}\rangle$ where the components have the following types:

Transformation α : For every object \mathcal{C} of \mathbf{C}, a morphism $\alpha_{\mathcal{C}}: F(\mathcal{C}) \rightarrow G(\mathcal{C})$ of \mathbf{D}
Naturality $\mathfrak{n}: \forall \mathcal{C}_{1} \xrightarrow{m} \mathcal{C}_{2}:$ C. $\alpha_{\mathcal{C}_{1}} ; G(m)=F(m) ; \alpha_{\mathcal{C}_{2}}$

Notation. $F \Rightarrow G$ denotes the set of natural transformations from F to G.
Notation. The identity morphism on an object O is often denoted simply as O. Similarly, the identity functor on a category \mathbf{C} is often denoted simply as \mathbf{C}.
Notation. The functor from \mathbf{C} to \mathbf{D} mapping everything to an object \mathcal{D} or its identity morphism is denoted with \mathcal{D}.
Definition (Endofunctor). A functor whose domain and codomain are the same.
Example. The following are natural transformations between endofunctors on Set:

```
singleton: Set }=>\mathbb{L}:\langle\lambda\tau.\lambdat.[t],.
doubleton: Set }=>\mathbb{L}:\langle\lambda\tau.\lambdat. [t,t],.
flatten:\mathbb{L};\mathbb{L}=>\mathbb{L}:\langle\lambda\tau.\lambda[\vec{\mp@subsup{t}{1}{\prime}},\ldots,\vec{\mp@subsup{t}{n}{\prime}}].\vec{\mp@subsup{t}{1}{}}++\ldots++\vec{\mp@subsup{t}{n}{\prime}},.\rangle
reverse: }\mathbb{L}=>\mathbb{L}:\langle\lambda\tau.\lambda[\mp@subsup{t}{1}{},\ldots,\mp@subsup{t}{n}{}].[\mp@subsup{t}{n}{},\ldots,\mp@subsup{t}{1}{}],.
length:\mathbb{L}=>\mathbb{N:}\langle\lambda\tau.\lambda[\mp@subsup{t}{1}{},\ldots,\mp@subsup{t}{n}{\prime}].n,.\rangle
```

Exercise 1. Prove that the set of natural transformations from $\mathcal{C}_{1}: \mathbf{1} \rightarrow \mathbf{C}$ to $\mathcal{C}_{2}: \mathbf{1} \rightarrow \mathbf{C}$ is isomorphic to the set of morphisms from the object selected by \mathcal{C}_{1} to the object selected by \mathcal{C}_{2}.

Exercise 2. Prove that a natural transformation from $m_{1}: \mathbf{2} \rightarrow \mathbf{C}$ to $m_{2}: \mathbf{2} \rightarrow \mathbf{C}$ is a commuting square with the morphism selected by m_{1} on the left and the morphism selected by m_{2} on the right.

Exercise 3. Prove that the reflection arrows of a reflective subcategory $\mathbf{S} \stackrel{I}{\hookrightarrow} \mathbf{C}$ form a natural transformation $r: \mathbf{C} \Rightarrow R ; I: \mathbf{C} \rightarrow \mathbf{C}$.

Exercise 4. Prove that for any reflective subcategory there is a natural transformation $\varepsilon: I ; R \Rightarrow \mathbf{S}$. Specify this natural transformation in detail for the reflective subcategory Mon \hookrightarrow Sgr.

Exercise 5. Prove that a natural transformation could equivalently be defined as a tuple $\langle\alpha, \mathfrak{n}\rangle$ where the components have the following types:

Transformation $\alpha: \forall \mathcal{C}_{1} \xrightarrow{m} \mathcal{C}_{2}:$ C. $F\left(\mathcal{C}_{1}\right) \rightarrow G\left(\mathcal{C}_{2}\right)$
Naturality $\mathfrak{n}: \forall \mathcal{C}_{1} \xrightarrow{m_{1}} \mathcal{C}_{2} \xrightarrow{m_{2}} \mathcal{C}_{3} . F\left(m_{1}\right) ; \alpha_{m_{2}}=\alpha_{m_{1} ; m_{2}}=\alpha_{m_{1}} ; G\left(m_{2}\right)$

Exercise 6. Define the category $\mathbf{C} \rightarrow \mathbf{D}$ whose objects are functors from \mathbf{C} to \mathbf{D} and whose morphisms are natural transformations between those functors.

Exercise 7. Prove that reverse is an isomorphism in Set \rightarrow Set.

Exercise 8. Prove that the isomorphisms in $\mathbf{C} \rightarrow \mathbf{D}$ are precisely the natural transformations for which every morphism component is an isomorphism (referred to as a natural isomorphism).

Exercise 9. Prove that the monomorphisms in $\mathbf{C} \rightarrow \mathbf{D}$ are precisely the natural transformations for which every morphism component is a monomorphism (referred to as a natural monomorphism).

Exercise 10. Prove that there is a binary functor from $[\mathbf{C} \rightarrow \mathbf{D}, \mathbf{D} \rightarrow \mathbf{E}]$ to $\mathbf{C} \rightarrow \mathbf{E}$.
Exercise 11. Determine what 5 would be mapped to by singleton; doubleton : Set $\Rightarrow \mathbb{L} ; \mathbb{L}$.
Exercise 12. Prove that, for any reflective subcategory, $(r ; R) ;(R ; \varepsilon): R \Rightarrow R: \mathbf{C} \rightarrow \mathbf{S}$ and $(I ; r) ;(\varepsilon ; I): I \Rightarrow I$: $\mathbf{S} \rightarrow \mathbf{C}$ equal the identity natural transformation on R and I respectively, where we overload R and I to denote their identity natural transformations.

