Natural Transformations

Ross Tate

September 18, 2014

Definition (Natural Transformation from $F : \mathbf{C} \to \mathbf{D}$ to $G : \mathbf{C} \to \mathbf{D}$). A tuple $\langle \alpha, \mathfrak{n} \rangle$ where the components have the following types:

Transformation α : For every object \mathcal{C} of \mathbf{C} , a morphism $\alpha_{\mathcal{C}} : F(\mathcal{C}) \to G(\mathcal{C})$ of \mathbf{D}

Naturality n: $\forall C_1 \xrightarrow{m} C_2 : \mathbf{C}. \ \alpha_{C_1}; G(m) = F(m); \alpha_{C_2}$

Notation. $F \Rightarrow G$ denotes the set of natural transformations from F to G.

Notation. The identity morphism on an object O is often denoted simply as O. Similarly, the identity functor on a category C is often denoted simply as C.

Notation. The functor from C to D mapping everything to an object \mathcal{D} or its identity morphism is denoted with \mathcal{D} .

Definition (Endofunctor). A functor whose domain and codomain are the same.

Example. The following are natural transformations between endofunctors on Set:

$$\begin{split} & \texttt{singleton}: \mathbf{Set} \Rightarrow \mathbb{L} \texttt{:} \ \langle \lambda \tau. \ \lambda t. \ [t], \bullet \rangle \\ & \texttt{doubleton}: \mathbf{Set} \Rightarrow \mathbb{L} \texttt{:} \ \langle \lambda \tau. \ \lambda t. \ [t,t], \bullet \rangle \\ & \texttt{flatten}: \mathbb{L} \ \texttt{:} \mathbb{L} \Rightarrow \mathbb{L} \texttt{:} \ \langle \lambda \tau. \ \lambda [\vec{t}_1, \dots, \vec{t}_n]. \ \vec{t}_1 + \dots + + \vec{t}_n, \bullet \rangle \\ & \texttt{reverse}: \mathbb{L} \Rightarrow \mathbb{L} \texttt{:} \ \langle \lambda \tau. \ \lambda [t_1, \dots, t_n]. \ [t_n, \dots, t_1], \bullet \rangle \\ & \texttt{length}: \mathbb{L} \Rightarrow \mathbb{N} \texttt{:} \ \langle \lambda \tau. \ \lambda [t_1, \dots, t_n]. \ n, \bullet \rangle \end{split}$$

Exercise 1. Prove that the set of natural transformations from $C_1 : \mathbf{1} \to \mathbf{C}$ to $C_2 : \mathbf{1} \to \mathbf{C}$ is isomorphic to the set of morphisms from the object selected by C_1 to the object selected by C_2 .

Exercise 2. Prove that a natural transformation from $m_1 : \mathbf{2} \to \mathbf{C}$ to $m_2 : \mathbf{2} \to \mathbf{C}$ is a commuting square with the morphism selected by m_1 on the left and the morphism selected by m_2 on the right.

Exercise 3. Prove that the reflection arrows of a reflective subcategory $\mathbf{S} \stackrel{I}{\hookrightarrow} \mathbf{C}$ form a natural transformation $r: \mathbf{C} \Rightarrow R; I: \mathbf{C} \to \mathbf{C}$.

Exercise 4. Prove that for any reflective subcategory there is a natural transformation $\varepsilon : I; R \Rightarrow S$. Specify this natural transformation in detail for the reflective subcategory **Mon** \hookrightarrow **Sgr**.

Exercise 5. Prove that a natural transformation could equivalently be defined as a tuple $\langle \alpha, \mathfrak{n} \rangle$ where the components have the following types:

Transformation α : $\forall C_1 \xrightarrow{m} C_2 : \mathbf{C}. F(C_1) \to G(C_2)$

Naturality n: $\forall C_1 \xrightarrow{m_1} C_2 \xrightarrow{m_2} C_3$. $F(m_1); \alpha_{m_2} = \alpha_{m_1; m_2} = \alpha_{m_1}; G(m_2)$

Exercise 6. Define the category $\mathbf{C} \rightarrow \mathbf{D}$ whose objects are functors from \mathbf{C} to \mathbf{D} and whose morphisms are natural transformations between those functors.

Exercise 7. Prove that reverse is an isomorphism in $\mathbf{Set} \rightarrow \mathbf{Set}$.

Exercise 8. Prove that the isomorphisms in $\mathbf{C} \rightarrow \mathbf{D}$ are precisely the natural transformations for which every morphism component is an isomorphism (referred to as a natural isomorphism).

Exercise 9. Prove that the monomorphisms in $\mathbf{C} \rightarrow \mathbf{D}$ are precisely the natural transformations for which every morphism component is a monomorphism (referred to as a natural monomorphism).

Exercise 10. Prove that there is a binary functor from $[\mathbf{C} \rightarrow \mathbf{D}, \mathbf{D} \rightarrow \mathbf{E}]$ to $\mathbf{C} \rightarrow \mathbf{E}$.

Exercise 11. Determine what 5 would be mapped to by singleton; doubleton : Set $\Rightarrow \mathbb{L}$; \mathbb{L} .

Exercise 12. Prove that, for any reflective subcategory, $(r; R); (R; \varepsilon) : R \Rightarrow R : \mathbb{C} \to \mathbb{S}$ and $(I; r); (\varepsilon; I) : I \Rightarrow I : \mathbb{S} \to \mathbb{C}$ equal the identity natural transformation on R and I respectively, where we overload R and I to denote their identity natural transformations.