Topoi

Ross Tate

December 3, 2014

Definition (Subobject Classifier for a Category C). An object Ω and a morphism **true** : $\top \to \Omega$ with the property that, for every monomorphism $m : S \hookrightarrow C$ in C, there exists a unique morphism $\chi_m : C \to \Omega$, called the characteristic morphism of m, with the property that the following is a pullback square:

Example. B with **true** is the subobject classifier for **Set**. Given an injection $m: S \rightarrow C$, then χ_m is the function $\lambda c. \exists s: S. m(s) = c$.

Definition (Topos). A finitely complete category with exponentials (with respect to products, denoted \rightarrow) and a subobject classifier.

Example. The category **Set** and its full subcategory **Fin** of finite sets are both topoi.

Remark. Every morphism from \top is a monomorphism (in any category with a terminal object, not just in topoi).

Theorem. One can implement $\wedge : \Omega \& \Omega \to \Omega$ as the characteristic morphism of $\langle \mathbf{true}, \mathbf{true} \rangle : \top \to \Omega \& \Omega$. One can implement $\Rightarrow : \Omega \& \Omega \to \Omega$ as the characteristic morphism of the equalizer of π_1 and \wedge from $\Omega \& \Omega$ to Ω (which works because $\phi \Rightarrow \psi$ holds if and only if $\phi \Leftrightarrow \phi \land \psi$ holds).

Notation. Given a morphism $f : \mathcal{A} \& \mathcal{B} \to \mathcal{C}$, we denote the corresponding morphism from \mathcal{B} to $\mathcal{A} \to \mathcal{C}$ with $\lambda_{\mathcal{A}} f$.

Theorem. Given an object C, one can implement $\forall_C : (C \to \Omega) \to \Omega$ as the characteristic morphism for $\lambda_C(\pi_2; \mathbf{true}) : \top \hookrightarrow (C \to \Omega)$.

Theorem. One can implement false : $\top \to \Omega$ as the morphism $(\lambda_{\Omega}\pi_1)$; \forall_{Ω} (which represents the proposition $\forall \phi$: Prop. ϕ).

Theorem. The pullback of true : $\top \to \Omega$ and false : $\top \to \Omega$ is an initial object.

Theorem. One can use the above components to implement $\forall : \Omega \& \Omega \to \Omega$ via the predicate $\forall p : \Omega. \ (\phi \Rightarrow p) \land (\psi \Rightarrow p) \Rightarrow p$. Similarly, one can implement $\exists_{\mathcal{C}} : (\mathcal{C} \Rightarrow \Omega) \to \Omega$ via the predicate $\forall p : \Omega. \ (\forall c : \mathcal{C}. \ \phi(c) \Rightarrow p) \Rightarrow p$.

Theorem. One can implement $=_{\mathcal{C}}: \mathcal{C} \& \mathcal{C} \to \Omega$ as the characteristic morphism of $(id_{\mathcal{C}}, id_{\mathcal{C}}): \mathcal{C} \hookrightarrow \mathcal{C} \& \mathcal{C}$.

Definition (Natural-Numbers Object of a Category **C**). An object \mathcal{N} along with morphisms $z : \top \to \mathcal{N}$ and $s : \mathcal{N} \to \mathcal{N}$ with the property that, for every object \mathcal{C} and morphisms $c_z : \top \to \mathcal{C}$ and $c_s : \mathcal{C} \to \mathcal{C}$, there exists a unique morphism $ind(c_z, c_s) : \mathcal{N} \to \mathcal{C}$ such that the following commutes:

$$\begin{array}{c} z & \mathcal{N} \xrightarrow{s} \mathcal{N} \\ \top & \swarrow & \downarrow ind(c_z, c_s) \\ c_z & \mathcal{C} \xrightarrow{c_s} \mathcal{C} \end{array} \xrightarrow{s} \mathcal{N} \\ \end{array}$$

Example. N with 0 and λn . n + 1 is a natural-numbers object of Set. Fin has no natural-numbers object. Theorem. All topoi are finitely cocomplete.

Definition (Boolean Topos). A topos with the property that $\top \xrightarrow{\text{true}} \Omega \xleftarrow{\text{false}} \top$ is a coproduct.

Definition (Two-Value Topos). A topos with exactly two morphisms from \top to Ω (necessarily **true** and **false**).

Definition (Well-Pointed). The property that for all $f, g: \mathcal{C}_1 \to \mathcal{C}_2, \forall e: \top \to \mathcal{C}_1. e; f = e; g$ implies f equals g.

Definition (Topos admitting the Axiom of Choice). A topos with the property that all epimorphisms are sections.

Theorem. Every topos admitting the axiom of choice is Boolean. Every well-pointed topos is two-value. Every well-pointed topos is Boolean (using a classical metatheory).