Topoi

Ross Tate

December 3, 2014

Definition (Subobject Classifier for a Category C). An object Ω and a morphism true : $\top \rightarrow \Omega$ with the property that, for every monomorphism $m: \mathcal{S} \hookrightarrow \mathcal{C}$ in \mathbf{C}, there exists a unique morphism $\chi_{m}: \mathcal{C} \rightarrow \Omega$, called the characteristic morphism of m, with the property that the following is a pullback square:

Example. \mathbb{B} with true is the subobject classifier for Set. Given an injection $m: S \rightarrow C$, then χ_{m} is the function $\lambda c . \exists s: S . m(s)=c$.

Definition (Topos). A finitely complete category with exponentials (with respect to products, denoted \rightarrow) and a subobject classifier.

Example. The category Set and its full subcategory Fin of finite sets are both topoi.
Remark. Every morphism from T is a monomorphism (in any category with a terminal object, not just in topoi).
Theorem. One can implement $\wedge: \Omega \& \Omega \rightarrow \Omega$ as the characteristic morphism of $\langle\boldsymbol{t r u e}, \mathbf{t r u e}\rangle: \top \hookrightarrow \Omega \& \Omega$. One can implement $\Rightarrow: \Omega \& \Omega \rightarrow \Omega$ as the characteristic morphism of the equalizer of π_{1} and \wedge from $\Omega \& \Omega$ to Ω (which works because $\phi \Rightarrow \psi$ holds if and only if $\phi \Leftrightarrow \phi \wedge \psi$ holds).
Notation. Given a morphism $f: \mathcal{A} \& \mathcal{B} \rightarrow \mathcal{C}$, we denote the corresponding morphism from \mathcal{B} to $\mathcal{A} \rightarrow \mathcal{C}$ with $\lambda_{\mathcal{A}} f$.
Theorem. Given an object \mathcal{C}, one can implement $\forall_{\mathcal{C}}:(\mathcal{C} \rightarrow \Omega) \rightarrow \Omega$ as the characteristic morphism for $\lambda_{C}\left(\pi_{2} ;\right.$ true $)$: $\top \hookrightarrow(C \rightarrow \Omega)$.
Theorem. One can implement false : $\top \rightarrow \Omega$ as the morphism $\left(\lambda_{\Omega} \pi_{1}\right) ; \forall_{\Omega}$ (which represents the proposition $\forall \phi$: Prop. ϕ).
Theorem. The pullback of true $: \top \rightarrow \Omega$ and false $: \top \rightarrow \Omega$ is an initial object.
Theorem. One can use the above components to implement $\vee: \Omega \& \Omega \rightarrow \Omega$ via the predicate $\forall p: \Omega .(\phi \Rightarrow p) \wedge(\psi \Rightarrow$ $p) \Rightarrow p$. Similarly, one can implement $\exists_{C}:(\mathcal{C} \rightarrow \Omega) \rightarrow \Omega$ via the predicate $\forall p: \Omega .(\forall c: \mathcal{C} . \phi(c) \Rightarrow p) \Rightarrow p$.

Theorem. One can implement ${ }_{c}: \mathcal{C} \& \mathcal{C} \rightarrow \Omega$ as the characteristic morphism of $\left\langle\right.$ id $\left._{\mathcal{C}}, i d_{C}\right\rangle: \mathcal{C} \hookrightarrow \mathcal{C} \& \mathcal{C}$.
Definition (Natural-Numbers Object of a Category C). An object \mathcal{N} along with morphisms $z: \top \rightarrow \mathcal{N}$ and $s: \mathcal{N} \rightarrow \mathcal{N}$ with the property that, for every object \mathcal{C} and morphisms $c_{z}: \top \rightarrow \mathcal{C}$ and $\mathcal{c}_{s}: \mathcal{C} \rightarrow \mathcal{C}$, there exists a unique morphism ind $\left(c_{z}, c_{s}\right): \mathcal{N} \rightarrow \mathcal{C}$ such that the following commutes:

Example. \mathbb{N} with 0 and $\lambda n . n+1$ is a natural-numbers object of Set. Fin has no natural-numbers object.
Theorem. All topoi are finitely cocomplete.
Definition (Boolean Topos). A topos with the property that $\top \xrightarrow{\text { true }} \Omega \stackrel{\text { false }}{\leftrightarrows} \top$ is a coproduct.
Definition (Two-Value Topos). A topos with exactly two morphisms from T to Ω (necessarily true and false).
Definition (Well-Pointed). The property that for all $f, \mathcal{g}: \mathcal{C}_{1} \rightarrow \mathcal{C}_{2}, \forall e: \top \rightarrow \mathcal{C}_{1} . e ; f=e ; \boldsymbol{g}$ implies f equals g.'
Definition (Topos admitting the Axiom of Choice). A topos with the property that all epimorphisms are sections.
Theorem. Every topos admitting the axiom of choice is Boolean. Every well-pointed topos is two-value. Every well-pointed topos is Boolean (using a classical metatheory).

