Opfibrations

Ross Tate

November 21, 2014

Definition (Opcartesian Morphism for a functor $F : \mathbf{C} \to \mathbf{D}$). A morphism $c_1 : \mathcal{C} \to \mathcal{C}_1$ of \mathbf{C} with the property that, for every \mathbf{C} -morphism $c_2 : \mathcal{C} \to \mathcal{C}_2$ and \mathbf{D} -morphism $d : F(\mathcal{C}_1) \to F(\mathcal{C}_2)$ such that $F(c_2)$ equals $F(c_1); d$, there exists a unique $c : \mathcal{C}_1 \to \mathcal{C}_2$ such that F(c) equals d and $c_1; c$ equals c_2 .

Example. A morphism $f : \mathcal{R}_1 \to \mathcal{R}_2$ of $\mathbf{Rel}(2)$ is opcartesian iff

$$\forall r_2, r'_2 : R_2. r_2 \leq r'_2 \implies \exists r_1, r'_1 : R_1. r_1 \leq r_2 \land f(r_1) = r_2 \land f(r'_1) = r'_2$$

Definition (Opfibration). A functor $F : \mathbb{C} \to \mathbb{D}$ with the property that, for every *F*-costructured arrow $d : F(\mathcal{C}_1) \to \mathcal{D}_2$, there exists some object \mathcal{C}_2 and opcartesian morphism $c : \mathcal{C}_1 \to \mathcal{C}_2$ such that F(c) equals d.

Remark. The term F-costructured arrow was introduced in the Transpositions lecture notes.

Example. The underlying functor for **Rel**(2) is an opfibration. Given an object $\langle X, \leq \rangle$ of **Rel**(2) and a function $f: X \to Y$, the corresponding opeartesian morphism f is the relation-preserving function from $\langle X, \leq \rangle$ to $\langle Y, \sqsubseteq \rangle$ where $y \sqsubseteq y'$ is defined as $\exists x, x' : X. x \leq x' \land f(x) = y \land f(x') = y'$.

*Remark. Cartesian*ness is dual to opcartesianness. An initial morphism in **Prost** is the same as a cartesian morphism for the underyling functor. The proofs for epi-initial-mono factorizations and unique diagonalizations in **Prost** implicitly relied on cartesianness.