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Definition ((Biased) Semigroup). A tuple 〈S, ∗, a〉 where the components have the following types:

Underlying Set S: Type

Operator ∗: S × S A S (infix)

Associativity a: ∀s1, s2, s3 : S. (s1 ∗ s2) ∗ s3 = s1 ∗ (s2 ∗ s3)

Example. Nmin = 〈N,min, �〉
(L+T )++ = 〈L+T,++, ·〉 where L+T denotes nonempty (finite) lists of T

(M+T )+ = 〈M+T,+, ·〉 where M+T denotes nonempty multisets of T

(S+T )∪ = 〈S+T,∪, ·〉 where S+T denotes nonempty finite subsets of T

(S+T )∩ = 〈S+T,∩, ·〉
(P+T )∪ = 〈P+T,∪, ·〉 where P+T denotes nonempty subsets of T

(P+T )∩ = 〈P+T,∩, ·〉

Definition ((Biased) Semigroup Homomorphism from 〈S, ∗, �〉 to 〈T,+, �〉). A tuple 〈f, d〉 where the components
have the following types:

Underlying Function f : S A T

Distributivity d: ∀s1, s2 : S. f(s1) + f(s2) = f(s1 ∗ s2)

Example. 〈λn. n+ 1, �〉 from Nmin to Nmin (and from Nmax to Nmax).

Exercise 1. Prove that Mon is a non-full subcategory of Sgr, the category of semigroups and semigroup homo-
morphisms (with the obvious composition and identity), via the obvious inclusion functor.

Definition ((Biased) Group). A tuple 〈G, ∗, a, e, i, -1, inv〉 where the components have the following types:

Underlying Set G: Type

Operator ∗: G×GA G (infix)

Associativity a: ∀g1, g2, g3 : G. (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3)

Identity Element e: G

Identity i: ∀g : G. e ∗ g = g = g ∗ e

Inverse Operator -1: GA G (postfix)

Inverse inv: ∀g : G. g ∗ g-1 = e = g-1 ∗ g

Definition ((Biased) Group Homomorphism from 〈G, ∗, �, e, �, -1, �〉 to 〈H,+, �, i, �,−, �〉). A tuple 〈f, d, i, inv〉 where
the components have the following types:
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Underlying Function f : GA H

Distributivity d: ∀g1, g2 : G. f(g1) + f(g2) = f(g1 ∗ g2)

Identity i: i = f(e)

Inverse inv: ∀g : G. −f(g) = f(g-1)

Exercise 2. Prove that Grp, the category of groups and group homomorphism (with the obvious composition and
identity), is a full subcategory of Mon.

Definition (Reflection Arrow for S
I
↪−� C). An object C of C and object R of S with a morphism C r−→ I(R ) of C

such that for every object S of S with a morphism C m−→ I(S) of C there exists a unique morphism R m�

−−→ S of S with
r ; I(m�) = m .

Exercise 3. Prove that, for Grp ↪→Mon, the identity on a monoid is a reflection arrow if and only if that monoid
is a group.

Exercise 4. Prove that, for Mon ↪→ Sgr, the identity on a semigroup is never a reflection arrow even if that
semigroup is a monoid.

Definition (Reflective Subcategory). A subcategory S
I
↪−� C with a reflection arrow C rC−→ I(RC ) for every object C

of C.

Exercise 5. Prove that Grp is a reflective subcategory of Mon, and that Mon is a reflective subcategory of Sgr.

Exercise 6. Prove that every reflective subcategory S
I
↪−� C has a unique way to extend a function R(C) = RC to a

functor so that the following diagram commutes for every morphism C1
m−→ C2 of C (meaning all paths are equal):

C1 I(R(C1))

C2 I(R(C2))

rC1

rC2

m I(R(m))

Exercise 7. Prove that, for a reflective subcategory S
I
↪−� C, the subcategory 〈S, I〉 is full if and only if for every

object S of S the identity on I(S) is a reflection arrow.
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