Nulls

Ross Tate

September 18, 2014

Definition ((Biased) Semigroup). A tuple $(S, *, \mathfrak{a})$ where the components have the following types:

Underlying Set S: Type

Operator $*: S \times S \rightarrow S$ (infix)

Associativity a: $\forall s_1, s_2, s_3 : S. (s_1 * s_2) * s_3 = s_1 * (s_2 * s_3)$

Example. $\mathbb{N}_{\min} = \langle \mathbb{N}, \min, \cdot \rangle$ $(\mathbb{L}_{+}T)_{++} = \langle \mathbb{L}_{+}T, ++, \cdot \rangle$ where $\mathbb{L}_{+}T$ denotes nonempty (finite) lists of T $(\mathbb{M}_{+}T)_{+} = \langle \mathbb{M}_{+}T, +, \cdot \rangle$ where $\mathbb{M}_{+}T$ denotes nonempty multisets of T $(\mathbb{S}_{+}T)_{\cup} = \langle \mathbb{S}_{+}T, \cup, \cdot \rangle$ where $\mathbb{S}_{+}T$ denotes nonempty finite subsets of T $(\mathbb{S}_{+}T)_{\cap} = \langle \mathbb{S}_{+}T, \cap, \cdot \rangle$ $(\mathbb{P}_{+}T)_{\cup} = \langle \mathbb{P}_{+}T, \cup, \cdot \rangle$ where $\mathbb{P}_{+}T$ denotes nonempty subsets of T $(\mathbb{P}_{+}T)_{\cap} = \langle \mathbb{P}_{+}T, \cap, \cdot \rangle$

Definition ((Biased) Semigroup Homomorphism from $\langle S, *, \cdot \rangle$ to $\langle T, +, \cdot \rangle$). A tuple $\langle f, \mathfrak{d} \rangle$ where the components have the following types:

Underlying Function $f: S \rightarrow T$ Distributivity $\mathfrak{d}: \forall s_1, s_2 : S. f(s_1) + f(s_2) = f(s_1 * s_2)$

Example. $\langle \lambda n. n + 1, \mathbf{I} \rangle$ from \mathbb{N}_{\min} to \mathbb{N}_{\min} (and from \mathbb{N}_{\max} to \mathbb{N}_{\max}).

Exercise 1. Prove that **Mon** is a non-full subcategory of **Sgr**, the category of semigroups and semigroup homomorphisms (with the obvious composition and identity), via the obvious inclusion functor.

Definition ((Biased) Group). A tuple $\langle G, *, \mathfrak{a}, e, \mathfrak{i}, {}^{-1}, \mathfrak{inv} \rangle$ where the components have the following types:

Underlying Set G: Type Operator *: $G \times G \rightarrow G$ (infix) Associativity a: $\forall g_1, g_2, g_3 : G. (g_1 * g_2) * g_3 = g_1 * (g_2 * g_3)$ Identity Element e: G Identity i: $\forall g : G. \ e * g = g = g * e$ Inverse Operator ⁻¹: $G \rightarrow G$ (postfix) Inverse inv: $\forall g : G. \ g * g^{-1} = e = g^{-1} * g$

Definition ((Biased) Group Homomorphism from $\langle G, *, \bullet, e, \bullet, {}^{-1}, \bullet \rangle$ to $\langle H, +, \bullet, i, \bullet, -, \bullet \rangle$). A tuple $\langle f, \mathfrak{d}, \mathfrak{i}, \mathfrak{inv} \rangle$ where the components have the following types:

Underlying Function $f: G \rightarrow H$ Distributivity $\mathfrak{d}: \forall g_1, g_2 : G. f(g_1) + f(g_2) = f(g_1 * g_2)$ Identity i: i = f(e)Inverse inv: $\forall g : G. -f(g) = f(g^{-1})$

Exercise 2. Prove that **Grp**, the category of groups and group homomorphism (with the obvious composition and identity), is a full subcategory of **Mon**.

Definition (Reflection Arrow for $\mathbf{S} \stackrel{I}{\hookrightarrow} \mathbf{C}$). An object \mathcal{C} of \mathbf{C} and object \mathcal{R} of \mathbf{S} with a morphism $\mathcal{C} \stackrel{r}{\to} I(\mathcal{R})$ of \mathbf{C} such that for every object \mathcal{S} of \mathbf{S} with a morphism $\mathcal{C} \stackrel{m}{\to} I(\mathcal{S})$ of \mathbf{C} there exists a unique morphism $\mathcal{R} \stackrel{m}{\longrightarrow} \mathcal{S}$ of \mathbf{S} with $r; I(m^{\leftarrow}) = m$.

Exercise 3. Prove that, for $\mathbf{Grp} \hookrightarrow \mathbf{Mon}$, the identity on a monoid is a reflection arrow if and only if that monoid is a group.

Exercise 4. Prove that, for $Mon \hookrightarrow Sgr$, the identity on a semigroup is never a reflection arrow even if that semigroup is a monoid.

Definition (Reflective Subcategory). A subcategory $\mathbf{S} \stackrel{I}{\hookrightarrow} \mathbf{C}$ with a reflection arrow $\mathcal{C} \stackrel{r_{\mathcal{C}}}{\to} I(\mathcal{R}_{\mathcal{C}})$ for every object \mathcal{C} of \mathbf{C} .

Exercise 5. Prove that Grp is a reflective subcategory of Mon, and that Mon is a reflective subcategory of Sgr.

Exercise 6. Prove that every reflective subcategory $\mathbf{S} \stackrel{I}{\hookrightarrow} \mathbf{C}$ has a unique way to extend a function $R(\mathcal{C}) = \mathcal{R}_{\mathcal{C}}$ to a functor so that the following diagram commutes for every morphism $\mathcal{C}_1 \stackrel{m}{\to} \mathcal{C}_2$ of \mathbf{C} (meaning all paths are equal):

$$\begin{array}{ccc} C_1 \xrightarrow{r_{C_1}} I(R(C_1)) \\ m \\ \downarrow & & \downarrow I(R(m)) \\ C_2 \xrightarrow{r_{C_2}} I(R(C_2)) \end{array}$$

Exercise 7. Prove that, for a reflective subcategory $\mathbf{S} \stackrel{I}{\hookrightarrow} \mathbf{C}$, the subcategory $\langle \mathbf{S}, I \rangle$ is full if and only if for every object \mathcal{S} of \mathbf{S} the identity on $I(\mathcal{S})$ is a reflection arrow.