Noninterference

Ross Tate

October 24, 2014

Definition (Power $\mathcal{E} \pitchfork \mathcal{C}$ for 2-Categories). Suppose **C** is a 2-category. Suppose **E** is a category, and \mathcal{C} in object of **C**. Then a power of \mathcal{C} by **E** is an object of **C**, often denoted by $\mathbf{E} \pitchfork \mathcal{C}$, such that for any **C**-object \mathcal{D} there is an isomorphism between the categories $\mathbf{M}_{\mathbf{C}}(\mathcal{D}, \mathbf{E} \pitchfork \mathcal{C})$ and $\mathbf{E} \twoheadrightarrow \mathbf{M}_{\mathbf{C}}(\mathcal{D}, \mathcal{C})$ that is natural with respect to \mathcal{D} . Naturality here means that the two bifunctors from $[\mathbf{M}_{\mathbf{C}}(\mathcal{D}_1, \mathcal{D}_2), \mathbf{M}_{\mathbf{C}}(\mathcal{D}_2, \mathbf{E} \pitchfork \mathcal{C})]$ to $\mathbf{E} \twoheadrightarrow \mathbf{M}_{\mathbf{C}}(\mathcal{D}_1, \mathcal{C})$ buildable from the isomorphisms and from concatonation as defined by **C** are equal.

Remark. Power is also known as cotensor.

Definition (Powered 2-Category). A 2-category for which a power object $\mathbf{E} \pitchfork \mathcal{C}$ exists for all categories \mathbf{E} and objects \mathcal{C} of the 2-category.

Remark. The fact that there is an identity 1-cell from $\mathbf{M}_{\mathbf{C}}(\mathbf{E} \pitchfork \mathcal{C}, \mathbf{E} \pitchfork \mathcal{C})$ implies that there is a functor $\pi : \mathbf{E} \to \mathbf{M}_{\mathbf{C}}(\mathbf{E} \pitchfork \mathcal{C}, \mathcal{C})$. For every object \mathcal{E} of \mathbf{E} , π maps \mathcal{E} to some 1-cell from $\mathbf{E} \pitchfork \mathcal{C}$ to \mathcal{C} , and for every morphism $e: \mathcal{E}_1 \to \mathcal{E}_2$ of \mathbf{E} , π maps e to some 2-cell from $\pi_{\mathcal{E}_1}$ to $\pi_{\mathcal{E}_2}$. Furthermore, identity morphisms are mapped to identity 2-cells, and compositions of morphisms are mapped to compositions of 2-cells. This functor has the property that, for any object \mathcal{D} of \mathbf{C} with a functor $D: \mathbf{E} \to \mathbf{M}_{\mathbf{C}}(\mathcal{D}, \mathcal{C})$, there exists a unique 1-cell $\langle D \rangle : \mathcal{D} \to \mathbf{E} \pitchfork \mathcal{C}$ such that for each object \mathcal{E} of \mathbf{E} the composition of 1-cells $\langle D \rangle$; $\pi_{\mathcal{E}}$ equals $D(\mathcal{E})$ and similarly equality of 2-cells holds for each morphism of \mathbf{E} . If there were another functor $D': \mathbf{E} \to \mathbf{M}_{\mathbf{C}}(\mathcal{D}, \mathcal{C})$ with a natural transformation $\alpha: D \Rightarrow D'$, then there would be a corresponding 2-cell $\langle \alpha \rangle : \langle D \rangle \Rightarrow \langle D' \rangle$.

Example. In **CAT**, the power of **C** by **E**, i.e. the object $\mathbf{E} \oplus \mathbf{C}$, is $\mathbf{E} \rightarrow \mathbf{C}$.

Theorem. For any 2-category \mathbf{C} , the operation $\mathbf{E} \pitchfork \bullet$, if defined on all objects of \mathbf{C} , can be extended to a 2-endofunctor on \mathbf{C} .