Monads

Ross Tate

October 16, 2014

Definition (Monad for a 2-Category C). A tuple $\langle \mathcal{C}, m, \mu, \mathfrak{a}, \eta, \mathfrak{i} \rangle$ whose components have the following types:

Remark. Given a 2-category, one can construct a multicategory whose objects are the 1-cells of the multicategory and whose morphisms are 2-cells from the composition of the inputs to the output. A monad is an internal monoid of that multicategory.

Theorem. For any monad $\langle C, m, \mu, \cdot, \eta, \cdot \rangle$ and $n : \mathbb{N}$, all 2-cells from m^n to m built from μ , η , and identities are equal.

Example. (Set, \mathbb{L} , flatten, \cdot , $[\bullet]$, \cdot) is a monad in CAT. Similar monads on Set exist for \mathbb{M} , \mathbb{S} , and \mathbb{P} .

Definition (Monad Morphism from $\langle C_1, m_1, \mu_1, \cdot, \eta_1, \cdot \rangle$ to $\langle C_2, m_2, \mu_2, \cdot, \eta_2, \cdot \rangle$). A morphism $f : C_1 \to C_2$ and a 2-cell $\alpha : m_1; f \Rightarrow f; m_2$ such that:

Remark. Note that, if f above is required to be an identity morphism, then the above definition corresponds to a morphism of an internal monoids of a multicategory. The generality above comes from viewing monads as internal monoids of an opetory.

Example. The obvious natural transformations from \mathbb{L} to \mathbb{M} to \mathbb{S} to \mathbb{P} are all monad morphisms where f is the identity functor of **Set**.