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Definition (Monad for a 2-Category C). A tuple (C, m, u, a,n,1) whose components have the following types:

Object C is an object of C
Morphism m is a morphism of C from C to C

Join p is a 2-cell of C from m;m = m

Associativity a is a proof that

In other words,
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Unit 7 is a 2-cell of C from C to m
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C C
m m m

Remark. Given a 2-category, one can construct a multicategory whose objects are the 1-cells of the multicategory
and whose morphisms are 2-cells from the composition of the inputs to the output. A monad is an internal monoid
of that multicategory.

Theorem. For any monad {C,m, u,«n,«) and n : N, all 2-cells from m™ to m built from p, 1, and identities are
equal.



Example. (Set,L,flatten,.,[e],.) is a monad in CAT. Similar monads on Set exist for M, S, and P.

Definition (Monad Morphism from (1, my, pi1,,71,.) to (Co, m2, ft2,+,M2,4)). A morphism £ : & — ¢ and a 2-cell
o m ;f = f;m such that:
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Remark. Note that, if £ above is required to be an identity morphism, then the above definition corresponds to a
morpishm of an internal monoids of a multicategory. The generality above comes from viewing monads as internal
monoids of an opetory.

Example. The obvious natural transformations from L to M to S to P are all monad morphisms where f is the
identity functor of Set.



