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Definition (Monad for a 2-Category C). A tuple 〈C ,m , µ, a, η, i〉 whose components have the following types:

Object C is an object of C

Morphism m is a morphism of C from C to C

Join µ is a 2-cell of C from m ; m ⇒ m
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Unit η is a 2-cell of C from C to m

Identity i is a proof that C C
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Remark. Given a 2-category, one can construct a multicategory whose objects are the 1-cells of the multicategory
and whose morphisms are 2-cells from the composition of the inputs to the output. A monad is an internal monoid
of that multicategory.

Theorem. For any monad 〈C ,m , µ, �, η, �〉 and n : N, all 2-cells from mn to m built from µ, η, and identities are
equal.
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Example. 〈Set,L, flatten, �, [•], �〉 is a monad in CAT. Similar monads on Set exist for M, S, and P.

Definition (Monad Morphism from 〈C1,m1, µ1, �, η1, �〉 to 〈C2,m2, µ2, �, η2, �〉). A morphism f : C1 → C2 and a 2-cell
α : m1 ; f ⇒ f ; m2 such that:
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Remark. Note that, if f above is required to be an identity morphism, then the above definition corresponds to a
morpishm of an internal monoids of a multicategory. The generality above comes from viewing monads as internal
monoids of an opetory.

Example. The obvious natural transformations from L to M to S to P are all monad morphisms where f is the
identity functor of Set.
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