Kleisli Categories

Ross Tate

October 15, 2014

Definition ($\langle \mathcal{C}, m, \mu, \cdot, \eta, \cdot \rangle$ -Postmodule in a 2-Category **C**). A tuple $\langle \mathcal{R}, r, \rho, \mathfrak{d}, \mathfrak{i} \rangle$ whose components have the following types:

Remark. A postmodule is more commonly called a right module.

Theorem. For every monad $\langle \mathcal{C}, \mathfrak{m}, \mu, \mathfrak{d}, \eta, \mathfrak{i} \rangle$, the tuple $\langle \mathcal{C}, \mathfrak{m}, \mu, \mathfrak{d}, \mathfrak{i} \rangle$ is a postmodule of that monad.

Definition (Eff(\mathcal{M}) where $\mathcal{M} = \langle \mathbf{C}, \mathcal{M}, \mu, \cdot, \eta, \cdot \rangle$ is a CAT-Monad). A category whose objects are the object of \mathbf{C} and whose morphisms from \mathcal{C}_1 to \mathcal{C}_2 are the **C**-morphisms from \mathcal{C}_1 to $\mathcal{M}(\mathcal{C}_2)$. Given $f : \mathcal{C}_1 \to \mathcal{C}_2$ and $g : \mathcal{C}_2 \to \mathcal{C}_3$ in Eff(\mathcal{M}), their composition in Eff(\mathcal{M}) is the **C**-morphism $f; \mathcal{M}(g); \mu_{\mathcal{C}_3}$. This composition is associative due to

naturality and associativity of μ . Given an object C, the identity morphism in $\mathbf{Eff}(\mathcal{M})$ is the C-morphism $\eta_{\mathcal{C}}$. This is an identity with respect to composition due to identity of η with respect to μ .

Remark. Eff(\mathcal{M}) is known as the Kleisli category of \mathcal{M} .

Exercise 1. Prove that $\mathbf{Eff}(\mathbb{P})$ is isomorphic to **Rel**.

Exercise 2. Prove that there is a functor $I : \mathbb{C} \to \text{Eff}(\mathcal{M})$ that maps \mathcal{C} to \mathcal{C} and f to the morphism whose corresponding \mathbb{C} -morphism is $f; \eta$ (or equivalently $\eta; M(f)$). Prove that there is a natural transformation ϱ : $M; I \Rightarrow I$ that maps \mathcal{C} to the morphism whose corresponding \mathbb{C} -morphism is $id_M(\mathcal{C})$. Prove that $\langle \text{Eff}(\mathcal{M}), I, \varrho, \cdot, \cdot \rangle$ is a \mathcal{M} -postmodule.

Remark. I above is injective if and only if η is a natural monomorphism, meaning $\eta_{\mathcal{C}}$ is a monomorphism for all \mathcal{C} .

Exercise 3. Prove that for any **CAT**-monad \mathcal{M} and \mathcal{M} -postmodule $\langle \mathbf{R}, R, \rho, \cdot, \cdot \rangle$, there is a unique functor R': Eff $(\mathcal{M}) \to \mathbf{R}$ such that R = I; R' and $\rho = \rho \cdot R'$.

Remark. Given a 2-category \mathbf{C} , one can construct an opetory with the same 0-cells and 1-cells and with a 2-cell for each 2-cell from the composition of the inputs to the output. **1** is the opetory with one 0-cell \mathcal{C} , one 1-cell $m : \mathcal{C} \to \mathcal{C}$, and one 2-cell from $m^n \Rightarrow m$ for each $n : \mathbb{N}$. A monad \mathcal{M} in \mathbf{C} corresponds to a functor M of opetories from **1** to \mathbf{C} . Let $\mathbf{1}_r$ be the operatory with two 0-cells \mathcal{C} and \mathcal{R} , two 1-cells $m : \mathcal{C} \to \mathcal{C}$ and $r : \mathcal{C} \to \mathcal{R}$, and one 2-cell from $m^n r$ to r for each $n : \mathbb{N}$ and one 2-cell from $m^n \Rightarrow m$ for each $n : \mathbb{N}$. There is a unique functor of opetories from **1** to $\mathbf{1}_r$, which we will call I_r . An \mathcal{M} -postmodule \mathcal{R} , then, corresponds to a functor R of opetories from $\mathbf{1}_r$ to \mathbf{C} such that $I_r; R$ equals M.

Exercise 4. Show that a monad morphism from \mathcal{M}_1 to \mathcal{M}_2 provides a functor from $\text{Eff}(\mathcal{M}_1)$ to $\text{Eff}(\mathcal{M}_2)$.