# Kleisli Categories 

Ross Tate

October 15, 2014

Definition $(\langle\mathcal{C}, m, \mu, \cdot, \eta, \cdot\rangle$-Postmodule in a 2-Category $\mathbf{C})$. A tuple $\langle\mathcal{R}, r, \rho, \mathfrak{d}, \mathfrak{i}\rangle$ whose components have the following types:

Object R: C
Morphism $r: \mathcal{C} \rightarrow \mathcal{R}$
Action $\rho: m ; r \Rightarrow r$

Distributivity d: A proof that
 equals


Identity i: A proof that


Remark. A postmodule is more commonly called a right module.
Theorem. For every monad $\langle\mathcal{C}, m, \mu, \mathfrak{d}, \eta, \mathfrak{i}\rangle$, the tuple $\langle\mathcal{C}, m, \mu, \mathfrak{d}, \mathfrak{i}\rangle$ is a postmodule of that monad.
Definition $(\mathbf{E f f}(\mathcal{M})$ where $\mathcal{M}=\langle\mathbf{C}, M, \mu, \bullet, \eta, \cdot\rangle$ is a CAT-Monad). A category whose objects are the object of $\mathbf{C}$ and whose morphisms from $\mathcal{C}_{1}$ to $\mathcal{C}_{2}$ are the $\mathbf{C}$-morphisms from $\mathcal{C}_{1}$ to $M\left(\mathcal{C}_{2}\right)$. Given $f: \mathcal{C}_{1} \rightarrow \mathcal{C}_{2}$ and $g: \mathcal{C}_{2} \rightarrow \mathcal{C}_{3}$ in $\operatorname{Eff}(\mathcal{M})$, their composition in $\operatorname{Eff}(\mathcal{M})$ is the $\mathbf{C}$-morphism $f ; M(g) ; \mu_{\mathcal{C}_{3}}$. This composition is associative due to
naturality and associativity of $\mu$. Given an object $\mathcal{C}$, the identity morphism in $\mathbf{E f f}(\mathcal{M})$ is the $\mathbf{C}$-morphism $\eta_{\mathcal{C}}$. This is an identity with respect to composition due to identity of $\eta$ with respect to $\mu$.

Remark. $\mathbf{E f f}(\mathcal{M})$ is known as the Kleisli category of $\mathcal{M}$.
Exercise 1. Prove that $\mathbf{E f f}(\mathbb{P})$ is isomorphic to Rel.
Exercise 2. Prove that there is a functor $I: \mathbf{C} \rightarrow \mathbf{E f f}(\mathcal{M})$ that maps $\mathcal{C}$ to $\mathcal{C}$ and $f$ to the morphism whose corresponding $\mathbf{C}$-morphism is $f ; \eta$ (or equivalently $\eta ; M(f)$ ). Prove that there is a natural transformation $\varrho$ : $M ; I \Rightarrow I$ that maps $\mathcal{C}$ to the morphism whose corresponding $\mathbf{C}$-morphism is $i d_{M}(\mathcal{C})$. Prove that $\langle\mathbf{E f f}(\mathcal{M}), I, \varrho, \cdot, \cdot\rangle$ is a $\mathcal{M}$-postmodule.

Remark. $I$ above is injective if and only if $\eta$ is a natural monomorphism, meaning $\eta_{\mathcal{C}}$ is a monomorphism for all $\mathcal{C}$.
Exercise 3. Prove that for any CAT-monad $\mathcal{M}$ and $\mathcal{M}$-postmodule $\langle\mathbf{R}, R, \rho, \cdot, \cdot\rangle$, there is a unique functor $R^{\prime}$ : $\operatorname{Eff}(\mathcal{M}) \rightarrow \mathbf{R}$ such that $R=I ; R^{\prime}$ and $\rho=\varrho \cdot R^{\prime}$.

Remark. Given a 2-category C, one can construct an opetory with the same 0 -cells and 1-cells and with a 2 -cell for each 2 -cell from the composition of the inputs to the output. $\mathbf{1}$ is the opetory with one 0 -cell $\mathcal{C}$, one 1 -cell $m: \mathcal{C} \rightarrow \mathcal{C}$, and one 2 -cell from $m^{n} \Rightarrow m$ for each $n: \mathbb{N}$. A monad $\mathcal{M}$ in $\mathbf{C}$ corresponds to a functor $M$ of opetories from $\mathbf{1}$ to C. Let $\mathbf{1}_{r}$ be the operatory with two 0-cells $\mathcal{C}$ and $\mathcal{R}$, two 1-cells $m: \mathcal{C} \rightarrow \mathcal{C}$ and $r: \mathcal{C} \rightarrow \mathcal{R}$, and one 2-cell from $m^{n} r$ to $r$ for each $n: \mathbb{N}$ and one 2 -cell from $m^{n} \Rightarrow m$ for each $n: \mathbb{N}$. There is a unique functor of opetories from $\mathbf{1}$ to $\mathbf{1}_{r}$, which we will call $I_{r}$. An $\mathcal{M}$-postmodule $\mathcal{R}$, then, corresponds to a functor $R$ of opetories from $\mathbf{1}_{r}$ to $\mathbf{C}$ such that $I_{r} ; R$ equals $M$.

Exercise 4. Show that a monad morphism from $\mathcal{M}_{1}$ to $\mathcal{M}_{2}$ provides a functor from $\operatorname{Eff}\left(\mathcal{M}_{1}\right)$ to $\mathbf{E f f}\left(\mathcal{M}_{2}\right)$.

