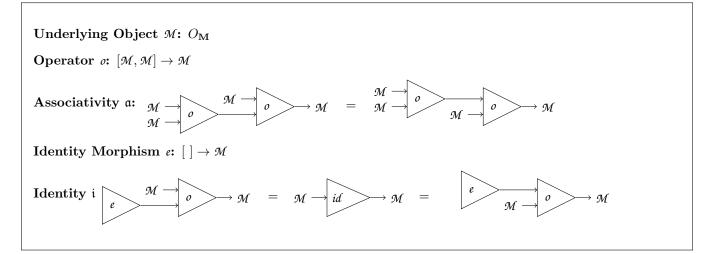
Internalization

Ross Tate

September 9, 2014

Definition (Internal Biased Monoid of a Multicategory **M**). A tuple $\langle \mathcal{M}, o, \mathfrak{a}, e, \mathfrak{i} \rangle$ where the components have the following types:



Example. The following are equivalent to internal monoids of respective multicategories:

Set: A monoid

Prost: A monoid with a congruent preorder, meaning a preorder \leq on the underlying set M such that:

 $\forall m_1, m_1', m_2, m_2' : M. \ m_1 \le m_1' \land m_2 \le m_2' \implies m_1 \ast m_2 \le m_1' \ast m_2'$

 \mathcal{M} where \mathcal{M} is a monoid: The identity element of \mathcal{M}

BinRel: A set and a preorder on that set

SplitGraph: A small category

Definition (Internal (Biased) Monoid Homomorphism from $\langle \mathcal{M}_1, o_1, \cdot, e_1, \cdot \rangle$ to $\langle \mathcal{M}_2, o_2, \cdot, e_2 \rangle$). A tuple $\langle f, \mathfrak{d}, \mathfrak{i} \rangle$ where the components have the following types:

