Homomorphisms

Ross Tate

September 2, 2014

Definition ((Biased) Monoid Homomorphism from $\langle M, *, \cdot, e, \cdot\rangle$ to $\langle N,+, \cdot, i, \cdot\rangle)$. A tuple $\langle f, \mathfrak{d}, \mathfrak{i}\rangle$ where the components have the following types:

Underlying Function $f: M \rightarrow N$
Distributivity d: $\forall m_{1}, m_{2}: M . f\left(m_{1}\right)+f\left(m_{2}\right)=f\left(m_{1} * m_{2}\right)$
Identity $\mathfrak{i}: i=f(e)$

Example. $\langle\lambda \vec{t} . \vec{t}$ as $\mathbb{M} T, \cdot, \cdot\rangle$ from $(\mathbb{L} T)_{++}$to $(\mathbb{M} T)_{+}$
$\langle\operatorname{det}, .,$.$\rangle from \mathbb{R}^{n \times n}$ to \mathbb{R}_{*} where $\mathbb{R}^{n \times n}$ is matrices with matrix multiplication and det is the determinant
$\langle\lambda m . \lambda \vec{x} . M \cdot \vec{x}, \cdot, \cdot\rangle$ from $\mathbb{R}^{n \times n}$ to $\left(\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right)$ 。
Notation. We will say a function $f: M \rightarrow N$ is a biased monoid homomorphism from $\langle M, *, \cdot, e, \cdot\rangle$ to $\langle N,+, \cdot, i, \cdot\rangle$ if there exist proofs \mathfrak{d} and \mathfrak{i} such that $\langle f, \mathfrak{d}, \mathfrak{i}\rangle$ is a biased monoid homomorphism from $\langle M, *, \cdot, e, \cdot \bullet\rangle$ to $\langle N,+, \cdot, i, \cdot \bullet\rangle$.

Definition ((Unbiased) Monoid Homomorphism from $\langle M, \Pi, \cdot,$.$\rangle to \langle N, \Sigma, \cdot,\rangle$.$) . A tuple \langle f, \mathfrak{d}\rangle$ where the components have the following types:

Underlying Function $f: M \rightarrow N$
Distributivity d: $\forall n: \mathbb{N}, m_{1}, \ldots, m_{n}: M . \Sigma\left[f\left(m_{1}\right), \ldots, f\left(m_{n}\right)\right]=f\left(\Pi\left[m_{1}, \ldots, m_{n}\right]\right)$

Example. $\langle-,$.$\rangle from \mathbb{Z}_{\Sigma}$ to \mathbb{Z}_{Σ}
$\langle-,$.$\rangle from \mathbb{R}_{\Sigma}$ to \mathbb{R}_{Σ}
$\langle-,$.$\rangle from \mathbb{N}_{\Sigma}$ to \mathbb{Z}_{Σ}
$\langle-,$.$\rangle from \mathbb{Z}_{\text {min }}^{+\infty}$ to $\mathbb{Z}_{\text {max }}^{-\infty}$
$\langle-,$.$\rangle from \mathbb{Z}_{\max }^{-\infty}$ to $\mathbb{Z}_{\text {min }}^{+\infty}$
$\langle ||,$.$\rangle from \mathbb{Z}_{\Pi}$ to \mathbb{N}_{Π}
$\langle\lambda n . n$ as $\mathbb{Z},$.$\rangle from \mathbb{N}_{\Sigma}$ to \mathbb{Z}_{Σ}
$\langle\lambda i$. i as $\mathbb{R}, \cdot\rangle$ from \mathbb{Z}_{Π} to \mathbb{R}_{Π}
Notation. We will say a function $f: M \rightarrow N$ is an unbiased monoid homomorphism from $\langle M, \Pi, \cdot, \cdot\rangle$ to $\langle N, \Sigma, \cdot, \cdot\rangle$ if there exists some proof \mathfrak{d} such that $\langle f, \mathfrak{d}\rangle$ is an unbiased monoid homomorphism from $\langle M, \Pi, \cdot, \cdot\rangle$ to $\langle N, \Sigma, \cdot, \cdot\rangle$.

Exercise 1. Suppose that \mathcal{M}_{U} and \mathcal{M}_{B} are an unbiased monoid and a biased monoid with the same underlying set M and with $\operatorname{Bias}\left(\mathcal{M}_{U}\right)=\mathcal{M}_{B}$ and $\operatorname{Unbias}\left(\mathcal{M}_{B}\right)=\mathcal{M}_{U}$, and suppose that \mathcal{N}_{U} and \mathcal{N}_{B} are an unbiased monoid and a biased monoid with the same underlying set N and with $\operatorname{Bias}\left(\mathcal{N}_{U}\right)=\mathcal{N}_{B}$ and $\operatorname{Unbias}\left(\mathcal{N}_{B}\right)=\mathcal{N}_{U}$. Prove for any function $f: M \rightarrow N$, that f is an unbiased monoid homomorphism from \mathcal{M}_{U} to \mathcal{N}_{U} if and only if f is a biased monoid homomorphism from \mathcal{M}_{B} to \mathcal{N}_{B}.

