Homomorphisms

Ross Tate

September 2, 2014

Definition ((Biased) Monoid Homomorphism from $\langle M, *, \cdot, e, \cdot \rangle$ to $\langle N, +, \cdot, i, \cdot \rangle$). A tuple $\langle f, \mathfrak{d}, \mathfrak{i} \rangle$ where the components have the following types:

Underlying Function $f: M \rightarrow N$ Distributivity $\mathfrak{d}: \forall m_1, m_2 : M. f(m_1) + f(m_2) = f(m_1 * m_2)$ Identity i: i = f(e)

Example. $\langle \lambda \vec{t}, \vec{t} \text{ as } \mathbb{M}T, ., . \rangle$ from $(\mathbb{L}T)_{++}$ to $(\mathbb{M}T)_{+}$

 $\langle \det, \cdot, \cdot \rangle$ from $\mathbb{R}^{n \times n}_{\cdot}$ to $\mathbb{R}_{\cdot}^{n \times n}$ is matrices with matrix multiplication and det is the determinant $\langle \lambda m. \ \lambda \vec{x}. \ M \cdot \vec{x}, \cdot, \cdot \rangle$ from $\mathbb{R}^{n \times n}_{\cdot}$ to $(\mathbb{R}^n \to \mathbb{R}^n)_{\circ}$

Notation. We will say a function $f: M \to N$ is a biased monoid homomorphism from $\langle M, *, \bullet, e, \bullet \rangle$ to $\langle N, +, \bullet, i, \bullet \rangle$ if there exist proofs \mathfrak{d} and \mathfrak{i} such that $\langle f, \mathfrak{d}, \mathfrak{i} \rangle$ is a biased monoid homomorphism from $\langle M, *, \bullet, e, \bullet \rangle$ to $\langle N, +, \bullet, i, \bullet \rangle$.

Definition ((Unbiased) Monoid Homomorphism from $\langle M, \Pi, \cdot, \cdot \rangle$ to $\langle N, \Sigma, \cdot, \cdot \rangle$). A tuple $\langle f, \mathfrak{d} \rangle$ where the components have the following types:

Underlying Function $f: M \rightarrow N$ Distributivity $\mathfrak{d}: \forall n : \mathbb{N}, m_1, \dots, m_n : M. \Sigma [f(m_1), \dots, f(m_n)] = f(\Pi [m_1, \dots, m_n])$

Example. $\langle -, \cdot \rangle$ from \mathbb{Z}_{Σ} to \mathbb{Z}_{Σ} $\langle -, \cdot \rangle$ from \mathbb{R}_{Σ} to \mathbb{R}_{Σ} $\langle -, \cdot \rangle$ from \mathbb{N}_{Σ} to \mathbb{Z}_{Σ} $\langle -, \cdot \rangle$ from $\mathbb{Z}_{\min}^{+\infty}$ to $\mathbb{Z}_{\max}^{-\infty}$ $\langle -, \cdot \rangle$ from $\mathbb{Z}_{\max}^{-\infty}$ to $\mathbb{Z}_{\min}^{+\infty}$ $\langle | |, \cdot \rangle$ from \mathbb{Z}_{Π} to \mathbb{N}_{Π} $\langle \lambda n. n \text{ as } \mathbb{Z}, \cdot \rangle$ from \mathbb{N}_{Σ} to \mathbb{Z}_{Σ}

 $\langle \lambda i. i \text{ as } \mathbb{R}, \cdot \rangle$ from \mathbb{Z}_{Π} to \mathbb{R}_{Π}

Notation. We will say a function $f: M \to N$ is an unbiased monoid homomorphism from $\langle M, \Pi, \bullet, \bullet \rangle$ to $\langle N, \Sigma, \bullet, \bullet \rangle$ if there exists some proof \mathfrak{d} such that $\langle f, \mathfrak{d} \rangle$ is an unbiased monoid homomorphism from $\langle M, \Pi, \bullet, \bullet \rangle$ to $\langle N, \Sigma, \bullet, \bullet \rangle$.

Exercise 1. Suppose that \mathcal{M}_U and \mathcal{M}_B are an unbiased monoid and a biased monoid with the same underlying set M and with $Bias(\mathcal{M}_U) = \mathcal{M}_B$ and $Unbias(\mathcal{M}_B) = \mathcal{M}_U$, and suppose that \mathcal{N}_U and \mathcal{N}_B are an unbiased monoid and a biased monoid with the same underlying set N and with $Bias(\mathcal{N}_U) = \mathcal{N}_B$ and $Unbias(\mathcal{N}_B) = \mathcal{N}_U$. Prove for any function $f: \mathcal{M} \to N$, that f is an unbiased monoid homomorphism from \mathcal{M}_U to \mathcal{N}_U if and only if f is a biased monoid homomorphism from \mathcal{M}_B to \mathcal{N}_B .