Enrichment

Ross Tate

September 15, 2014

Definition ((Biased) M-Enriched Category where M is a Multicategory). A tuple $\langle O, \mathcal{M}, c, \mathfrak{a}, i, i \rangle$ where the components have the following types:

Objects $O: Type_1$

Morphisms \mathcal{M} : For each pair of objects $\mathcal{C}_1, \mathcal{C}_2 : O$, an object $\mathcal{M}(\mathcal{C}_1, \mathcal{C}_2)$ of M

Compositions c: For each triple of objects $C_1, C_2, C_3 : O$, an M-morphism $c : [\mathcal{M}(C_1, C_2), \mathcal{M}(C_2, C_3)] \to \mathcal{M}(C_1, C_3)$

Associativity a: For each quadruple of objects $C_1, C_2, C_3, C_4 : O$,

Identities *i*: For each object C: O, an M-morphism $i: [] \to \mathcal{M}(C, C)$

Identity i: For each pair of object $C_1, C_2 : O$,

Example. The following are equivalent to categories enriched in a respective multicategory:

Set: A category

Prost: A category plus a preorder \leq on each set of morphisms such that $f_1 \leq f_2 \land g_1 \leq g_2 \implies f_1; g_1 \leq f_2; g_2$

 $\langle \mathbb{R}_{\geq 0}, +, 0, \geq \rangle$: A hemimetric space: a set of "locations" L and a function d specifying the "distance" from one location to another such that $0 \geq d(\ell, \ell)$ and $d(\ell_1, \ell_2) + d(\ell_2, \ell_3) \geq d(\ell_1, \ell_3)$

Definition ((Unbiased) M-Enriched Category). A pair $\langle O, C \rangle$ where O: Type₁ and C is a functor of multicategories from Path(O) to M.

Exercise 1. Give a bijection between biased and unbiased M-enriched categories.

Remark. The multicategory **Prost** has an "underlying" functor U to the multicategory **Set**. We say a category **C** (enriched in **Set**) can be enriched in **Prost** when its functor C from **Path** $(O_{\mathbf{C}})$ to **Set** can factor through U, meaning there is a functor C' from **Path** $(O_{\mathbf{C}})$ to **Prost** such that C'; U = C.

Example. The category **Prost** can be enriched in the multicategory **Prost**. For a pair of objects $\langle X, \leq \rangle$ and $\langle Y, \leq \rangle$ of the category **Prost**, define $\mathcal{M}(\langle X, \leq \rangle, \langle Y, \leq \rangle)$ to be $M_{\mathbf{Prost}}(\langle X, \leq \rangle, \langle Y, \subseteq \rangle)$ equipped with the preorder $f \leq g$ defined by $\forall x. \ f(x) \leq g(x)$. Next we need to show that composition preserves this preorder on morphisms. If $f_1 \leq f_2$ and $g_1 \leq g_2$ then $\forall x. \ (f_1; g_1)(x) = g_1(f_1(x)) \leq g_1(f_2(x)) \leq g_2(f_2(x)) = (f_2; g_2)(x)$, so $f_1; g_1 \leq g_2; g_2$. Identity is trivially relation-preserving.

Definition ((Biased) M-Enriched Functor from $\langle O_1, \mathcal{M}_1, c_1, \cdot, i_1, \cdot \rangle$ to $\langle O_2, \mathcal{M}_2, c_2, \cdot, i_2, \cdot \rangle$). A tuple $\langle F, f, \mathfrak{d}, \mathfrak{i} \rangle$ where the components have the following types:

Object Mapping $F: O_1 \rightarrow O_2$

Morphism "Mapping" f: For all pairs $C_1, C_2 : O_1$, an M-morphism $f : [\mathcal{M}_1(C_1, C_2)] \to \mathcal{M}_2(F(C_1), F(C_2))$

Distributivity \mathfrak{d} : For all triples of objects $C_1, C_2, C_3 : O_1$:

$$\mathcal{M}_{1}(\mathcal{C}_{2},\mathcal{C}_{3}) \longrightarrow f \qquad \mathcal{M}_{2}(F(\mathcal{C}_{2}),F(\mathcal{C}_{3}))$$

$$\downarrow c_{2} \longrightarrow \mathcal{M}_{2}(F(\mathcal{C}_{1}),F(\mathcal{C}_{3})) = \mathcal{M}_{1}(\mathcal{C}_{2},\mathcal{C}_{3}) \longrightarrow c_{1} \qquad \mathcal{M}_{1}(\mathcal{C}_{1},\mathcal{C}_{3}) \longrightarrow \mathcal{M}_{2}(F(\mathcal{C}_{1}),F(\mathcal{C}_{2}))$$

$$\mathcal{M}_{1}(\mathcal{C}_{1},\mathcal{C}_{2}) \longrightarrow f \qquad \mathcal{M}_{2}(F(\mathcal{C}_{1}),F(\mathcal{C}_{2}))$$

$$\textbf{Identity i: For all object } \mathcal{C}: O, \overbrace{i_2} \longrightarrow \mathcal{M}_2(F(\mathcal{C}), F(\mathcal{C})) = \overbrace{i_1} \underbrace{\mathcal{M}_1(\mathcal{C}, \mathcal{C})}_f \underbrace{f} \longrightarrow \mathcal{M}_2(F(\mathcal{C}), F(\mathcal{C}))$$

Example. A $\langle \mathbb{R}_{\geq 0}, +, 0, \geq \rangle$ -enriched functor is a nonexpansive map from a hemimetric space with location set L_1 and distance function d_1 to a hemimetric space with location set L_2 and distance function d_2 , meaning a function $f: L_1 \to L_2$ such that for all locations $\ell_1, \ell_2: L_1$ we have $d_1(\ell_1, \ell_2) \geq d_2(f(\ell_1), f(\ell_2))$.