Effectors

Ross Tate

October 17, 2014

Definition (Effector). A tuple $\langle E, \stackrel{\circ}{\mapsto}, \mathfrak{a}, \mathfrak{i} \rangle$ whose components have the following types:

Set of Effects E: Type Sequence Relation $\stackrel{\circ}{\mapsto}$: $\mathbb{L}(E) \times E \rightarrow \operatorname{Prop}$ Associativity a: $\forall \vec{\varepsilon_1}, \dots, \vec{\varepsilon_n}, \varepsilon. \ \forall \varepsilon_1, \dots, \varepsilon_n. \ (\forall i. \vec{\varepsilon_i} \stackrel{\circ}{\mapsto} \varepsilon_i) \wedge [\varepsilon_1, \dots, \varepsilon_n] \stackrel{\circ}{\mapsto} \varepsilon \implies \vec{\varepsilon_1} + \dots + + \vec{\varepsilon_n} \stackrel{\circ}{\mapsto} \varepsilon$ Identity i: $\forall \varepsilon. \ [\varepsilon] \stackrel{\circ}{\mapsto} \varepsilon$

Example. An important example is where E is the singleton set and $\stackrel{\circ}{\mapsto}$ always holds.

Definition ((Biased) **M**-Enriched Natural Transformation from $\langle F_1, f_1, \cdot, \cdot \rangle$ to $\langle F_2, f_2, \cdot, \cdot \rangle$ as **M**-enriched functors from $\langle O_1, \mathcal{M}_1, c_1, \cdot, i_1, \cdot \rangle$ to $\langle O_2, \mathcal{M}_2, c_2, \cdot, i_2, \cdot \rangle$). A tuple $\langle t, \mathfrak{n} \rangle$ where the components have the following types:

Transformation t: For all pairs $C_1, C_2 : O_1$, an M-morphism $t : [\mathcal{M}_1(C_1, C_2)] \rightarrow \mathcal{M}_2(F_1(C_1), F_2(C_2))$ Naturality \mathfrak{d} : For all triples of objects $C_1, C_2, C_3 : O_1$: $\mathcal{M}_1(C_2, C_3) \rightarrow f_2 \rightarrow \mathcal{M}_2(F_2(C_2), F_2(C_3))$ $\mathcal{M}_2(F_1(C_1), F_2(C_3)) = \mathcal{M}_1(C_2, C_3) \rightarrow f_1 \rightarrow \mathcal{M}_2(F_1(C_2), F_2(C_3))$ $\mathcal{M}_1(C_1, C_2) \rightarrow f_1 \rightarrow \mathcal{M}_2(F_1(C_1), F_2(C_3)) = \mathcal{M}_1(C_1, C_2) \rightarrow \mathcal{M}_2(F_1(C_1), F_1(C_2))$

Example. A **Prost**-enriched category is essentially a category with a preordering on each set of morphisms such that composition preserves the preordering. A **Prost**-enriched functor is essentially a functor F with the additional property that $m_1 \leq m_2$ in the domain **Prost**-enriched category implies that $F(m_1) \leq F(m_2)$ in the codomain **Prost**-enriched category. A **Prost**-enriched natural transformation turns out to be equivalent to just a natural transformation.

Notation. A M-enriched category is sometimes referred to as simply a M-category. A M-enriched functor is sometimes referred to as simply a M-functor. A M-enriched natural transformation is sometimes referred to as simply a M-transformation.

Definition (CAT(M)). The 2-category whose objects are M-categories, whose morphisms are M-functors, and whose 2-cells are M-transformations.

Example. The function on sets/types L can be made into a **Prost**-monad on the **Prost**-category **Rel**.

Definition (Lax Algebra of a **Prost**-Monad \mathcal{M} on a **Prost**-Category **C**). A tuple $\langle \mathcal{C}, a, \mathfrak{a}, \mathfrak{i} \rangle$ whose components have the following types:

Underlying Object C: C Operation a: $M(C) \rightarrow C$ Associativity a: M(a); $a \leq \mu_C$; $a : M(M(C)) \rightarrow C$ Identity i: $id_C \leq \eta_C$; $a : C \rightarrow C$

Remark. The above definition can be generalized to **CAT**-monads by changing \mathfrak{a} and \mathfrak{i} to be 2-cells α and ι and then imposing equations required to be satisfied by α and ι .

Remark. An effector is exactly a lax algebra of the **Prost**-monad \mathbb{L} on the **Prost**-category **Rel**.

Exercise 1. Prove that there is a bijection between the set of effectors and the set of small thin multicategories (where thin means there is at most one morphism from any domain to any codomain).

Definition (Semi-strict Effector). An effector with the following additional property:

 $\forall \vec{\varepsilon_1}, \dots, \vec{\varepsilon_n}, \varepsilon. \ \vec{\varepsilon_1} + \dots + \vec{\varepsilon_n} \stackrel{\circ}{\mapsto} \varepsilon \implies \exists \varepsilon_1, \dots, \varepsilon_n. \ (\forall i. \vec{\varepsilon_i} \stackrel{\circ}{\mapsto} \varepsilon_i) \land [\varepsilon_1, \dots, \varepsilon_n] \stackrel{\circ}{\mapsto} \varepsilon$

Definition (Effectoid). A set *E* along with a unary relation $\varepsilon \mapsto \bullet$, a binary relation $\bullet \leq \bullet$, and a ternary relation $\bullet \varsigma \bullet \mapsto \bullet$ satisfying:

 $\exists \varepsilon_{\ell}, \varepsilon \mapsto \varepsilon_{\ell} \wedge \varepsilon_{\ell} \varepsilon \varepsilon \mapsto \varepsilon'$

Identity	$\forall \varepsilon, \varepsilon'.$	$ \begin{aligned} & & \uparrow \\ & & & \\ & & \varepsilon \leq \varepsilon' \\ & & \uparrow \\ & \exists \varepsilon_r. \ \mathfrak{E} \mapsto \varepsilon_r \wedge \varepsilon_{\mathfrak{I}} \varepsilon_r \mapsto \varepsilon' \end{aligned} $
$\mathbf{Associativity}$	$\forall \varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon.$	$ \begin{aligned} \exists \bar{\varepsilon}. \ \varepsilon_1 & \varepsilon_2 \mapsto \bar{\varepsilon} \land \bar{\varepsilon} & \varepsilon_3 \mapsto \varepsilon \\ & & \\ & \\ \exists \hat{\varepsilon}. \ \varepsilon_2 & \varepsilon_3 \mapsto \hat{\varepsilon} \land \varepsilon_1 & \hat{\varepsilon} \mapsto \varepsilon \end{aligned} $
Reflexivity	$\forall \varepsilon.$	$\varepsilon \leq \varepsilon$
Congruonco	$\forall \varepsilon, \varepsilon'.$	$\mathfrak{E} \mapsto \varepsilon \wedge \varepsilon \leq \varepsilon' \implies \mathfrak{E} \mapsto \varepsilon'$
Congi dence	$\forall \varepsilon_1, \varepsilon_2, \varepsilon, \varepsilon'.$	$\varepsilon_1 \varepsilon_2 \mapsto \varepsilon \wedge \varepsilon \leq \varepsilon' \implies \varepsilon_1 \varepsilon_2 \mapsto \varepsilon'$

Theorem. There is a bijection between the set of semi-strict effectors and the set of effectoids. The bijection preserves the set E. The unary relation $\varepsilon \mapsto \varepsilon$ corresponds to $[] \stackrel{\circ}{\mapsto} \varepsilon$; the binary relation $\varepsilon \leq \varepsilon'$ corresponds to $[\varepsilon] \stackrel{\circ}{\mapsto} \varepsilon'$; and the ternary relation $\varepsilon_1 \varepsilon_2 \mapsto \varepsilon$ corresponds to $[\varepsilon_1, \varepsilon_2] \stackrel{\circ}{\mapsto} \varepsilon$.