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Let C be the set of closed irreducible terms of the untyped lambda calculus extended to multiple-arity λs and
applications, where the term (λ〈x1, . . . , xn〉.c) 〈c1, . . . , cn〉 reduces (in one step) to c[x1 7→ c1, . . . , xn 7→ cn]. Define
c ·〈c1, . . . , cn〉 to be the partial operation outputing the (unique) normalization of c 〈c1, . . . , cn〉 if one exists. We use
π2
1 and π2

2 as abbreviations for λ〈x1, x2〉.x1 and λ〈x1, x2〉. x2 respectively. Recall that λ〈p〉. p 〈c1, c2〉 represents the
pair of c1 and c2.

Remark. The intuition is that C represents a codification of computation; we use the untyped lambda calculus simply
as a concise example. C could also be codifications of partial recursive functions or codifications of Turing machines.

Notation. A proposition containing partial operations does not hold if those operations do not produce an output.

Definition (Eff). The category with the following structure:

Object (Effective Set) A set X and a ternary relation x1
c
≈ x2, where x1, x2 : X and c : C, such that the following

properties hold:

∃c : C. ∀x1, x2 : X. ∀c′ : C. x1
c′

≈ x2 =⇒ x2
c ·〈c′〉
≈ x1

∃c : C. ∀x1, x2, x3 : X. ∀c`, cr : C. x1
c`≈ x2 ∧ x2

cr≈ x3 =⇒ x1
c ·〈c`,cr〉≈ x3

The intuition is that x1
c
≈ x2 means that c is defined to serve as evidence that x1 is equal to x2. The two

required properties indicate that symmetry and transitivity are realizable: the process of transforming evidence
of equality into evidence of the symmetric equality is computable, and the process of transforming evidences
of two connected equalities into evidence of the transitive equality is computable. Note that all elements of X
are necessarily equal to themselves according to this ternary relation, which represents being undefined in the
“effective” set.

Morphism from 〈X,≈〉 to 〈Y,≈〉 (Realizable Function) An equivalence class of ternary relations x
c−→ y, where

x : X, y : Y , and c : C, satisfying the following four properties:

∃c : C. ∀x1, x2 : X. ∀y1, y2 : Y. ∀cx, cy, c′ : C. x1
cx≈ x2 ∧ y1

cy
≈ y2 ∧ x1

c′−→ y1 =⇒ x2
c ·〈cx,cy,c′〉−−−−−−−→ y2

∃c : C. ∀x : X. ∀y : Y. ∀c′ : C. x
c′−→ y =⇒ x

c ·〈π2
1 ,c

′〉
≈ x ∧ y

c ·〈π2
2 ,c

′〉
≈ y

∃c : C. ∀x : X. ∀y1, y2 : Y. ∀c1, c2 : C. x
c1−→ y1 ∧ x

c2−→ y2 =⇒ y1
c ·〈c1,c2〉≈ y2

∃c : C. ∀x : X. ∀cx : C. x
cx≈ x =⇒ ∃y : Y. x

c ·〈cx〉−−−−→ y

The intuition is that x
c−→ y means that c is defined to serve as evidence that x maps to y. The four required

properties indicate that extensionality (the maps-to relation is preserved by equivalence), strictness (only well-
defined elements are related), left determinedness (the right half of the maps-to relation is determined up to
equivalence by the left half), and left totality (every well-defined left element is related to some right element)
are realizable.

Two such ternary relations → and →∗ are considered to be in the same equivalence class if the following hold:

∃c : C. ∀x : X. ∀y : Y. ∀c′ : C. x
c′−→ y =⇒ x

c ·〈c′〉−−−→∗ y

∃c : C. ∀x : X. ∀y : Y. ∀c′ : C. x
c′−→∗ y =⇒ x

c ·〈c′〉−−−→ y

In other words, they are equivalent if there are computations for converting between their evidence for any
given mapping.

Identity The identity on 〈X,≈〉 is the weakest relation such that ∀x, x′ : X. ∀c : C. x
c
≈ x′ =⇒ x

c−→ x′.
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Composition The weakest relation such that ∀x : X. ∀y : Y. ∀z : Z. ∀c, c′ : C. x
c−→ y∧y c′−→ z =⇒ x

λ〈p〉. p 〈c,c′〉−−−−−−−−→ z.

Notation. We can denote the equality and maps-to relations with functions X × X A PC and X × Y A PC

respectively.

Theorem. 〈1, (1, 1 7→ C)〉 and 〈1, (1, 1 7→ {λx. x})〉 (or any other nonempty set) are terminal objects of Eff .

Theorem. Given 〈X,R〉 and 〈Y, S〉, their product in Eff is 〈X × Y, (〈x, y〉, 〈x′, y′〉 7→ {(λ〈p〉. p 〈cx, cy〉) | cx ∈
R(x, x′) ∧ cy ∈ S(y, y′)})〉.

Theorem. Given F and G from 〈X,R〉 to 〈Y, S〉, their equalizer in Eff is 〈X, (x, x′ 7→ {(λ〈p〉. p 〈cx, cf , cy〉) | cx ∈
R(x, x′) ∧ ∃y : Y. cf ∈ F (x, y) ∧ cg ∈ G(x′, y)})〉.

Theorem. >⊕> (i.e. B) is 〈B, (b1, b2 7→ {(if b1 then π2
1 else π2

2) | b1 = b2})〉.

Theorem. Eff is Boolean only if the halting problem is decidable.

Proof. Let H be {c : C | ∃c′ : C. c ·〈〉 = c′}. There is a monomorphism h from 〈H, (c 7→ {c})〉 to 〈C, (c 7→ {c})〉 given
by (h, c 7→ {h | h = c}) (i.e. the obvious inclusion). If B were a subobject classifier, then there would be a morphism
χh : 〈C, (c 7→ {c})〉 → B such that χh (c, b) is nonempty if and only if b indicates whether c ·〈〉 produces an output
(i.e. if and only if c halts on the empty input). Let ct be a code evidencing that χh is left total, and let cs be a code
evidencing that χh is strict. Then λx. cs 〈π2

2 , ct 〈x〉〉 must be a code that takes a code c and outputs either π2
1 if c ·〈〉

produces an output or π2
2 if c ·〈〉 does not produce an output, thereby deciding the halting problem.

Definition (Strict Predicate for an Effective Set 〈X,R〉). A function K : X A PC satisfying the following two
properties:

∃c : C. ∀x : X. ∀ck ∈ K(x). c ·〈ck〉 ∈ R(x, x)

∃c : C. ∀x, x′ : X. ∀ck ∈ K(x). ∀cx ∈ R(x, x′). c ·〈ck, cx〉 ∈ K(x′)

Theorem. Given a subobject M : 〈Y, S〉 ↪→ 〈X,R〉 in Eff , there exists a strict predicate K for 〈X,R〉 such that M is
isomorphic (as a subobject) to 〈X,RK〉 with the obvious inclusion, where RK is defined as (x, x′ 7→ {(λp. p 〈cx, ck, c′k〉 |
cx ∈ R(x, x′) ∧ ck ∈ K(x) ∧ c′k ∈ K(x′)}).

Theorem. Ω = 〈PC, (C,C ′ 7→ {(λp. p 〈f, f ′〉) | (∀c ∈ C. f ·〈c〉 ∈ C ′) ∧ (∀c′ ∈ C ′. f ′ ·〈c′〉 ∈ C)〉})〉 along with the
morphism true = (1, C 7→ C) : 〈1, (1 7→ C)〉 → Ω is a subobject classifier in Eff .

Given a subobject M of 〈X,R〉, let K be a corresponding strict predicate. Then the characterizing morphism
χM : 〈X,R〉 → Ω is (x,C 7→ {(λp. p 〈cx, f, f ′〉) | cx ∈ R(x, x) ∧ (∀c : C. f ·〈c〉 ∈ K(x)) ∧ (∀k : K(x). f ′ ·〈k〉 ∈ C)}).

Theorem. Eff is two-valued.

Proof. Every morphism from > to Ω corresponds to an isomorphic class of subobjects of >, which corresponds to an
isomorphic class of strict predicates on >. There are only two such isomorphic classes: the strict predicate mapping
the unique element of > to the empty set, and the strict predicates mapping the unique element of > to a nonmepty
set.

Theorem. Given 〈X,R〉 and 〈Y, S〉, their exponential (with respect to products) is the subobject of 〈X × Y A

PC, (F,G 7→ {(λ〈p〉. p 〈f, f ′〉) | ∀x : X. ∀y : Y. (∀c ∈ F (x, y). f · c ∈ G(x, y)) ∧ (∀c′ ∈ G(x, y). f ′ · c ∈ F (x, y))})〉
given by the strict predicate mapping F to the set of quadruples of codes exhibiting the four properties required for
morphisms.

Theorem. The natural-numbers object is 〈N, (map each number to its Church encoding)〉.

Remark. I am uncertain which of the following require a classical metalogic to prove.

Theorem (Church’s Thesis). There is a bijection between the set of endomorphisms on the natural-numbers object
of Eff and the set of computable functions from the natural numbers to the natural numbers.

Theorem (Markov’s Principle). The following proposition, interpreted as an element of Ω in Eff , equals true:

∀φ : N _ Ω. ¬¬(∃n : N . φ(n))⇒ ∃n : N . φ(n)

Theorem (Brouwer’s Principle). The following proposition, interpreted as an element of Ω in Eff , equals true:

∀f : (N _ N ) _ N . ∀g : N _ N . ∃n : N . ∀g′ : N _ N . ∀i : N . i ≤ n ∧ g(i) = g′(i)⇒ f(g) = f(g′)
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