The Effective Topos

Ross Tate

December 2, 2014

Let \mathbb{C} be the set of closed irreducible terms of the untyped lambda calculus extended to multiple-arity $\lambda \mathrm{d}$ and applications, where the term $\left(\lambda\left\langle x_{1}, \ldots, x_{n}\right\rangle . c\right)\left\langle c_{1}, \ldots, c_{n}\right\rangle$ reduces (in one step) to $c\left[x_{1} \mapsto c_{1}, \ldots, x_{n} \mapsto c_{n}\right]$. Define $c \cdot\left\langle c_{1}, \ldots, c_{n}\right\rangle$ to be the partial operation outputing the (unique) normalization of $c\left\langle c_{1}, \ldots, c_{n}\right\rangle$ if one exists. We use π_{1}^{2} and π_{2}^{2} as abbreviations for $\lambda\left\langle x_{1}, x_{2}\right\rangle . x_{1}$ and $\lambda\left\langle x_{1}, x_{2}\right\rangle . x_{2}$ respectively. Recall that $\lambda\langle p\rangle . p\left\langle c_{1}, c_{2}\right\rangle$ represents the pair of c_{1} and c_{2}.
Remark. The intuition is that \mathbb{C} represents a codification of computation; we use the untyped lambda calculus simply as a concise example. \mathbb{C} could also be codifications of partial recursive functions or codifications of Turing machines.

Notation. A proposition containing partial operations does not hold if those operations do not produce an output.
Definition (Eff). The category with the following structure:
Object (Effective Set) A set X and a ternary relation $x_{1} \stackrel{c}{\approx} x_{2}$, where $x_{1}, x_{2}: X$ and $c: \mathbb{C}$, such that the following properties hold:

$$
\begin{array}{r}
\exists c: \mathbb{C} \cdot \forall x_{1}, x_{2}: X \cdot \forall c^{\prime}: \mathbb{C} \cdot x_{1} \stackrel{\stackrel{c}{\prime}^{\prime}}{\approx} x_{2} \Longrightarrow x_{2} \stackrel{c \cdot\left\langle c^{\prime}\right\rangle}{\approx} x_{1} \\
\exists c: \mathbb{C} \cdot \forall x_{1}, x_{2}, x_{3}: X \cdot \forall c_{\ell}, c_{r}: \mathbb{C} \cdot x_{1} \stackrel{c_{\ell}}{\approx} x_{2} \wedge x_{2} \stackrel{c_{r}}{\approx} x_{3} \Longrightarrow x_{1} \stackrel{c \cdot\left\langle c_{\ell}, c_{r}\right\rangle}{\approx} x_{3}
\end{array}
$$

The intuition is that $x_{1} \stackrel{c}{\approx} x_{2}$ means that c is defined to serve as evidence that x_{1} is equal to x_{2}. The two required properties indicate that symmetry and transitivity are realizable: the process of transforming evidence of equality into evidence of the symmetric equality is computable, and the process of transforming evidences of two connected equalities into evidence of the transitive equality is computable. Note that all elements of X are necessarily equal to themselves according to this ternary relation, which represents being undefined in the "effective" set.

Morphism from $\langle X, \approx\rangle$ to $\langle Y, \approx\rangle$ (Realizable Function) An equivalence class of ternary relations $x \xrightarrow{c} y$, where $x: X, y: Y$, and $c: \mathbb{C}$, satisfying the following four properties:

$$
\begin{gathered}
\exists c: \mathbb{C} . \forall x_{1}, x_{2}: X . \forall y_{1}, y_{2}: Y . \forall c_{x}, c_{y}, c^{\prime}: \mathbb{C} \cdot x_{1} \stackrel{c_{x}}{\approx} x_{2} \wedge y_{1} \stackrel{c_{y}}{\approx} y_{2} \wedge x_{1} \xrightarrow{c^{\prime}} y_{1} \Longrightarrow x_{2} \xrightarrow{c \cdot\left\langle c_{x}, c_{y}, c^{\prime}\right\rangle} y_{2} \\
\exists c: \mathbb{C} \cdot \forall x: X \cdot \forall y: Y \cdot \forall c^{\prime}: \mathbb{C} \cdot x \xrightarrow{c^{\prime}} y \Longrightarrow x \stackrel{c \cdot\left\langle\pi_{2}^{2}, c^{\prime}\right\rangle}{\approx} x \wedge y \stackrel{c \cdot\left\langle\pi_{2}^{2}, c^{\prime}\right\rangle}{\approx} y \\
\exists c: \mathbb{C} \cdot \forall x: X \cdot \forall y_{1}, y_{2}: Y . \forall c_{1}, c_{2}: \mathbb{C} \cdot x \xrightarrow{c_{1}} y_{1} \wedge x \xrightarrow[\longrightarrow]{c_{2}} y_{2} \Longrightarrow y_{1} \stackrel{c \cdot\left\langle c_{1}, c_{2}\right\rangle}{\approx} y_{2} \\
\exists c: \mathbb{C} \cdot \forall x: X . \forall c_{x}: \mathbb{C} \cdot x \stackrel{c_{x}}{\approx} x \Longrightarrow \exists y: Y \cdot x \xrightarrow{c \cdot\left\langle c_{x}\right\rangle} y
\end{gathered}
$$

The intuition is that $x \xrightarrow{c} y$ means that c is defined to serve as evidence that x maps to y. The four required properties indicate that extensionality (the maps-to relation is preserved by equivalence), strictness (only welldefined elements are related), left determinedness (the right half of the maps-to relation is determined up to equivalence by the left half), and left totality (every well-defined left element is related to some right element) are realizable.
Two such ternary relations \rightarrow and \rightarrow_{*} are considered to be in the same equivalence class if the following hold:

$$
\begin{aligned}
& \exists c: \mathbb{C} . \forall x: X . \forall y: Y . \forall c^{\prime}: \mathbb{C} \cdot x \xrightarrow{c^{\prime}} y \Longrightarrow x \xrightarrow{c \cdot\left\langle c^{\prime}\right\rangle} * y \\
& \exists c: \mathbb{C} \cdot \forall x: X \cdot \forall y: Y . \forall c^{\prime}: \mathbb{C} \cdot x{\xrightarrow{c^{\prime}}}_{*} y \Longrightarrow x \xrightarrow{c \cdot\left\langle c^{\prime}\right\rangle} y
\end{aligned}
$$

In other words, they are equivalent if there are computations for converting between their evidence for any given mapping.

Identity The identity on $\langle X, \approx\rangle$ is the weakest relation such that $\forall x, x^{\prime}: X . \forall c: \mathbb{C} \cdot x \stackrel{c}{\approx} x^{\prime} \Longrightarrow x \stackrel{c}{\rightarrow} x^{\prime}$.

Composition The weakest relation such that $\forall x: X . \forall y: Y . \forall z: Z . \forall c, c^{\prime}: \mathbb{C} . x \xrightarrow{c} y \wedge y \xrightarrow{c^{\prime}} z \Longrightarrow x \xrightarrow{\lambda\langle p\rangle . p\left\langle c, c^{\prime}\right\rangle} z$. Notation. We can denote the equality and maps-to relations with functions $X \times X \rightarrow \mathbb{P C}$ and $X \times Y \rightarrow \mathbb{P} \mathbb{C}$ respectively.

Theorem. $\langle\mathbb{1},(1,1 \mapsto \mathbb{C})\rangle$ and $\langle\mathbb{1},(1,1 \mapsto\{\lambda x . x\})\rangle$ (or any other nonempty set) are terminal objects of $\mathbf{E f f}$.
Theorem. Given $\langle X, R\rangle$ and $\langle Y, S\rangle$, their product in Eff is $\left\langle X \times Y,\left(\langle x, y\rangle,\left\langle x^{\prime}, y^{\prime}\right\rangle \mapsto\left\{\left(\lambda\langle p\rangle . p\left\langle c_{x}, c_{y}\right\rangle\right) \mid c_{x} \in\right.\right.\right.$ $\left.\left.\left.R\left(x, x^{\prime}\right) \wedge c_{y} \in S\left(y, y^{\prime}\right)\right\}\right)\right\rangle$.

Theorem. Given F and G from $\langle X, R\rangle$ to $\langle Y, S\rangle$, their equalizer in $\mathbf{E f f}$ is $\left\langle X,\left(x, x^{\prime} \mapsto\left\{\left(\lambda\langle p\rangle . p\left\langle c_{x}, c_{f}, c_{y}\right\rangle\right) \mid c_{x} \in\right.\right.\right.$ $\left.\left.\left.R\left(x, x^{\prime}\right) \wedge \exists y: Y . c_{f} \in F(x, y) \wedge c_{g} \in G\left(x^{\prime}, y\right)\right\}\right)\right\rangle$.

Theorem. $\top \oplus \top$ (i.e. $\mathbb{B})$ is $\left\langle\mathbb{B},\left(b_{1}, b_{2} \mapsto\left\{\left(\right.\right.\right.\right.$ if b_{1} then π_{1}^{2} else $\left.\left.\left.\left.\pi_{2}^{2}\right) \mid b_{1}=b_{2}\right\}\right)\right\rangle$.
Theorem. Eff is Boolean only if the halting problem is decidable.
Proof. Let \mathbb{H} be $\left\{c: \mathbb{C} \mid \exists c^{\prime}: \mathbb{C} . c \cdot\langle \rangle=c^{\prime}\right\}$. There is a monomorphism κ from $\langle\mathbb{H},(c \mapsto\{c\})\rangle$ to $\langle\mathbb{C},(c \mapsto\{c\})\rangle$ given by $(h, c \mapsto\{h \mid h=c\})$ (i.e. the obvious inclusion). If \mathbb{B} were a subobject classifier, then there would be a morphism $\chi_{\hbar}:\langle\mathbb{C},(c \mapsto\{c\})\rangle \rightarrow \mathbb{B}$ such that $\chi_{\hbar}(c, b)$ is nonempty if and only if b indicates whether $c \cdot\rangle$ produces an output (i.e. if and only if c halts on the empty input). Let c_{t} be a code evidencing that χ_{\hbar} is left total, and let c_{s} be a code evidencing that χ_{\hbar} is strict. Then $\lambda x . c_{s}\left\langle\pi_{2}^{2}, c_{t}\langle x\rangle\right\rangle$ must be a code that takes a code c and outputs either π_{1}^{2} if $c \cdot\rangle$ produces an output or π_{2}^{2} if $c \cdot\rangle$ does not produce an output, thereby deciding the halting problem.

Definition (Strict Predicate for an Effective Set $\langle X, R\rangle$). A function $K: X \rightarrow \mathbb{P} \mathbb{C}$ satisfying the following two properties:

$$
\begin{gathered}
\exists c: \mathbb{C} . \forall x: X . \forall c_{k} \in K(x) . c \cdot\left\langle c_{k}\right\rangle \in R(x, x) \\
\exists c: \mathbb{C} . \forall x, x^{\prime}: X . \forall c_{k} \in K(x) . \forall c_{x} \in R\left(x, x^{\prime}\right) \cdot c \cdot\left\langle c_{k}, c_{x}\right\rangle \in K\left(x^{\prime}\right)
\end{gathered}
$$

Theorem. Given a subobject $M:\langle Y, S\rangle \hookrightarrow\langle X, R\rangle$ in Eff, there exists a strict predicate K for $\langle X, R\rangle$ such that M is isomorphic (as a subobject) to $\left\langle X, R_{K}\right\rangle$ with the obvious inclusion, where R_{K} is defined as $\left(x, x^{\prime} \mapsto\left\{\left(\lambda p . p\left\langle c_{x}, c_{k}, c_{k}^{\prime}\right\rangle \mid\right.\right.\right.$ $\left.\left.c_{x} \in R\left(x, x^{\prime}\right) \wedge c_{k} \in K(x) \wedge c_{k}^{\prime} \in K\left(x^{\prime}\right)\right\}\right)$.
Theorem. $\Omega=\left\langle\mathbb{P C},\left(C, C^{\prime} \mapsto\left\{\left(\lambda p . p\left\langle f, f^{\prime}\right\rangle\right)\left|\left(\forall c \in C . f \cdot\langle c\rangle \in C^{\prime}\right) \wedge\left(\forall c^{\prime} \in C^{\prime} . f^{\prime} \cdot\left\langle c^{\prime}\right\rangle \in C\right)\right\rangle\right\}\right)\right\rangle$ along with the morphism true $=(1, C \mapsto C):\langle\mathbb{1},(1 \mapsto \mathbb{C})\rangle \rightarrow \Omega$ is a subobject classifier in $\mathbf{E f f}$.

Given a subobject M of $\langle X, R\rangle$, let K be a corresponding strict predicate. Then the characterizing morphism $\chi_{M}:\langle X, R\rangle \rightarrow \Omega$ is $\left(x, C \mapsto\left\{\left(\lambda p . p\left\langle c_{x}, f, f^{\prime}\right\rangle\right) \mid c_{x} \in R(x, x) \wedge(\forall c: C . f \cdot\langle c\rangle \in K(x)) \wedge\left(\forall k: K(x) . f^{\prime} \cdot\langle k\rangle \in C\right)\right\}\right)$.

Theorem. Eff is two-valued.
Proof. Every morphism from \top to Ω corresponds to an isomorphic class of subobjects of \top, which corresponds to an isomorphic class of strict predicates on T. There are only two such isomorphic classes: the strict predicate mapping the unique element of T to the empty set, and the strict predicates mapping the unique element of T to a nonmepty set.

Theorem. Given $\langle X, R\rangle$ and $\langle Y, S\rangle$, their exponential (with respect to products) is the subobject of $\langle X \times Y \rightarrow$ $\left.\mathbb{P C},\left(F, G \mapsto\left\{\left(\lambda\langle p\rangle . p\left\langle f, f^{\prime}\right\rangle\right) \mid \forall x: X . \forall y: Y .(\forall c \in F(x, y) . f \cdot c \in G(x, y)) \wedge\left(\forall c^{\prime} \in G(x, y) . f^{\prime} \cdot c \in F(x, y)\right)\right\}\right)\right\rangle$ given by the strict predicate mapping F to the set of quadruples of codes exhibiting the four properties required for morphisms.

Theorem. The natural-numbers object is $\langle\mathbb{N},($ map each number to its Church encoding) \rangle.
Remark. I am uncertain which of the following require a classical metalogic to prove.
Theorem (Church's Thesis). There is a bijection between the set of endomorphisms on the natural-numbers object of $\mathbf{E f f}$ and the set of computable functions from the natural numbers to the natural numbers.

Theorem (Markov's Principle). The following proposition, interpreted as an element of Ω in $\mathbf{E f f}$, equals true:

$$
\forall \phi: \mathcal{N} \rightarrow \Omega . \neg \neg(\exists n: \mathcal{N} \cdot \phi(n)) \Rightarrow \exists n: \mathfrak{N} \cdot \phi(n)
$$

Theorem (Brouwer's Principle). The following proposition, interpreted as an element of Ω in Eff, equals true:

$$
\forall f:(\mathcal{N} \rightarrow \mathcal{N}) \rightarrow \mathcal{N} . \forall g: \mathcal{N} \rightarrow \mathcal{N} . \exists n: \mathcal{N} . \forall g^{\prime}: \mathcal{N} \rightarrow \mathcal{N} . \forall i: \mathcal{N} . i \leq n \wedge g(i)=g^{\prime}(i) \Rightarrow f(g)=f\left(g^{\prime}\right)
$$

