Confidentiality and Integrity

Ross Tate

October 23, 2014

Theorem. In CAT, given \mathbf{E} and \mathbf{C}, let π be the functor from \mathbf{E} to $(\mathbf{E} \pitchfork \mathbf{C}) \rightarrow \mathbf{C}$ demonstrating that $\mathbf{E} \pitchfork \mathbf{C}$ is a power. Then, provided \mathbf{C} has products, for each $\mathcal{E}: \mathbf{E}$, the functor $\pi_{\mathcal{E}}: \mathbf{E} \pitchfork \mathbf{C} \rightarrow \mathbf{C}$ has a right adjoint, and, provided \mathbf{C} has coproducts, $\pi_{\mathcal{E}}$ also has a left adjoint.

Let $C_{\mathcal{E}}: \mathbf{C} \rightarrow \mathbf{E} \pitchfork \mathbf{C}$ be a right adjoint to $\pi_{\mathcal{E}}$. This means that there is a morphism $c_{\mathcal{E}, \mathcal{C}}: \pi_{\mathcal{E}}\left(C_{\mathcal{E}}(\mathcal{C})\right) \rightarrow \mathcal{C}$ for every object \mathcal{C} of \mathbf{C}, and for every object \mathcal{P} of $\mathbf{E} \pitchfork \mathbf{C}$ and morphism $p: \pi_{\mathcal{E}}(\mathcal{P}) \rightarrow \mathcal{C}$, there exists a unique morphism $p^{\rightarrow}: \mathcal{P} \rightarrow C_{\mathcal{E}}(\mathcal{C})$ in $\mathbf{E} \pitchfork \mathbf{C}$ such that $\pi_{\mathcal{E}}\left(p^{\rightarrow}\right) ; \mathcal{c}_{\mathcal{E}, \mathcal{C}}$ equals p. To construct such a $C_{\mathcal{E}}$, recall that an object of $\mathbf{E} \pitchfork \mathbf{C}$ is a functor from \mathbf{E} to \mathbf{C}. Consequently, for any such object \mathscr{P} the morphism $p: \pi_{\mathcal{E}}(\mathcal{P}) \rightarrow \mathcal{C}$ provides a morphism from $\mathcal{P}\left(\mathcal{E}^{\prime}\right)$ for each object \mathcal{E}^{\prime} and morphism $e: \mathcal{E}^{\prime} \rightarrow \mathcal{E}$ of \mathbf{E}, given by $\mathcal{P}(e) ; p$. So, we can define $C_{\mathcal{E}}(\mathcal{C})\left(\mathcal{E}^{\prime}\right)$ to be $\&_{e: \mathcal{E}^{\prime} \rightarrow \mathcal{E}} \mathcal{C}$, meaning \mathcal{C} producted with itself once for each morphism $\mathcal{E}^{\prime} \rightarrow \mathcal{E}$, and every $\mathcal{P}\left(\mathcal{E}^{\prime}\right)$ will have a morphism to $C_{\mathcal{E}}(\mathcal{C})\left(\mathcal{E}^{\prime}\right)$ given by $\langle\mathcal{P}(e) ; p\rangle_{e: \mathcal{E}^{\prime} \rightarrow \mathcal{E}}$. Also, given an object $\mathcal{E}^{\prime \prime}$ and morphism $e^{\prime}: \mathcal{E}^{\prime \prime} \rightarrow \mathcal{E}^{\prime}$, we can define $C_{\mathcal{E}}\left(e^{\prime}\right)$ to be $\left\langle\pi_{e^{\prime} ; e}\right\rangle_{e: \mathcal{E}^{\prime} \rightarrow \mathcal{E}}$, and then the collection of morphisms presented earlier is guaranteed to form a natural transformation from \mathcal{P} to $C_{\mathcal{E}}(\mathcal{C})$, i.e. a morphism of $\mathbf{E} \pitchfork \mathbf{C}$. Finally, we can define $\mathcal{c}_{\mathcal{E}, \mathcal{C}}: \pi_{\mathcal{E}}\left(I_{\mathcal{E}}(\mathcal{C})\right) \rightarrow \mathcal{C}$ to be $\pi_{i d_{\mathcal{E}}}:\left(\&_{e: \mathcal{E} \rightarrow \mathcal{E}} \mathcal{C}\right) \rightarrow \mathcal{C}$, and so $\langle\mathcal{P}(e) ; p\rangle_{e: \mathcal{E} \rightarrow \mathcal{E}} ; \pi_{i d}$ equals $\mathcal{P}\left(i d_{\mathcal{E}}\right) ; p$ which equals p as desired. $C_{\mathcal{E}}$ can be extended into a functor because \& is functorial and π is natural.

A similar argument applies to the left adjoint. Let $I_{\mathcal{E}}: \mathbf{C} \rightarrow \mathbf{E} \pitchfork \mathbf{C}$ be a left adjoint to $\pi_{\mathcal{E}}$. This means that there is a morphism $i_{\mathcal{E}, \mathcal{C}}: \mathcal{C} \rightarrow \pi_{\mathcal{E}}\left(I_{\mathcal{E}}(\mathcal{C})\right.$) for every object \mathcal{C} of \mathbf{C}, and for every object \mathcal{P} of $\mathbf{E} \pitchfork \mathbf{C}$ and morphism $p: \mathcal{C} \rightarrow \pi_{\mathcal{E}}(\mathcal{P})$, there exists a unique morphism $p^{\leftarrow}: I_{\mathcal{E}}(\mathcal{C}) \rightarrow \mathcal{P}$ in $\mathbf{E} \pitchfork \mathbf{C}$ such that $i_{\mathcal{E}, c} ; \pi_{\mathcal{E}}\left(p^{\leftarrow}\right)$ equals p. To construct such a $I_{\mathcal{E}}$, recall that an object of $\mathbf{E} \pitchfork \mathbf{C}$ is a functor from \mathbf{E} to \mathbf{C}. Consequently, for any such object P the morphism $p: \mathcal{C} \rightarrow \pi_{\mathcal{E}}(\mathcal{P})$ provides a morphism to $\mathcal{P}\left(\mathcal{E}^{\prime}\right)$ for each object \mathcal{E}^{\prime} and morphism $e: \mathcal{E} \rightarrow \mathcal{E}^{\prime}$ of \mathbf{E}, given by $p ; \mathcal{P}(e)$. So, we can define $C_{\mathcal{E}}(\mathcal{C})\left(\mathcal{E}^{\prime}\right)$ to be $\bigoplus_{e: \mathcal{E} \rightarrow \mathcal{E}^{\prime}} \mathcal{C}$, meaning \mathcal{C} coproducted with itself once for each morphism $\mathfrak{E} \rightarrow \mathcal{E}^{\prime}$, and every $\mathcal{P}\left(\mathcal{E}^{\prime}\right)$ will have a morphism from $C_{\mathcal{E}}(\mathcal{C})\left(\mathcal{E}^{\prime}\right)$ given by $[p ; \mathcal{P}(e)]_{e: \mathcal{E} \rightarrow \mathcal{E}^{\prime}}$. Also, given an object $\mathcal{E}^{\prime \prime}$ and morphism $e^{\prime}: \mathcal{E}^{\prime} \rightarrow \mathcal{E}^{\prime \prime}$, we can define $C_{\mathcal{E}}\left(e^{\prime}\right)$ to be $\left[\kappa_{e ; e^{\prime}}\right]_{e: \mathcal{E} \rightarrow \mathcal{E}^{\prime}}$, and then the collection of morphisms presented earlier is guaranteed to form a natural transformation from $C_{\mathcal{E}}(\mathcal{C})$ to \mathcal{P}, i.e. a morphism of $\mathbf{E} \pitchfork \mathbf{C}$. Finally, we can define $i_{\mathcal{E}, \mathcal{C}}: \mathcal{C} \rightarrow \pi_{\mathcal{E}}\left(C_{\mathcal{E}}(\mathcal{C})\right)$ to be $\kappa_{i d_{\mathcal{E}}}: \mathcal{C} \rightarrow \bigoplus_{e: \mathcal{E} \rightarrow \mathcal{E}} \mathcal{C}$, and so $\kappa_{i d_{\mathcal{E}}} ;[p ; \mathcal{P}(e)]_{e: \mathcal{E} \rightarrow \mathcal{E}}$ equals $p ; \mathcal{P}\left(i d_{\mathcal{E}}\right)$ which equals p as desired. $I_{\mathcal{E}}$ can be extended into a functor because \oplus is functorial and κ is natural.

