Confidentiality and Integrity

Ross Tate

October 23, 2014

Theorem. In CAT, given \mathbf{E} and \mathbf{C} , let π be the functor from \mathbf{E} to $(\mathbf{E} \pitchfork \mathbf{C}) \rightarrow \mathbf{C}$ demonstrating that $\mathbf{E} \pitchfork \mathbf{C}$ is a power. Then, provided \mathbf{C} has products, for each $\mathcal{E} : \mathbf{E}$, the functor $\pi_{\mathcal{E}} : \mathbf{E} \pitchfork \mathbf{C} \rightarrow \mathbf{C}$ has a right adjoint, and, provided \mathbf{C} has coproducts, $\pi_{\mathcal{E}}$ also has a left adjoint.

Let $C_{\mathfrak{E}}: \mathbf{C} \to \mathbf{E} \pitchfork \mathbf{C}$ be a right adjoint to $\pi_{\mathfrak{E}}$. This means that there is a morphism $c_{\mathfrak{E},\mathcal{C}}: \pi_{\mathfrak{E}}(C_{\mathfrak{E}}(\mathcal{C})) \to \mathcal{C}$ for every object \mathcal{C} of \mathbf{C} , and for every object \mathcal{P} of $\mathbf{E} \pitchfork \mathbf{C}$ and morphism $p: \pi_{\mathfrak{E}}(\mathcal{P}) \to \mathcal{C}$, there exists a unique morphism $p^{\neg}: \mathcal{P} \to C_{\mathfrak{E}}(\mathcal{C})$ in $\mathbf{E} \pitchfork \mathbf{C}$ such that $\pi_{\mathfrak{E}}(p^{\neg}); c_{\mathfrak{E},\mathcal{C}}$ equals p. To construct such a $C_{\mathfrak{E}}$, recall that an object of $\mathbf{E} \pitchfork \mathbf{C}$ is a functor from \mathbf{E} to \mathbf{C} . Consequently, for any such object \mathcal{P} the morphism $p: \pi_{\mathfrak{E}}(\mathcal{P}) \to \mathcal{C}$ provides a morphism from $\mathcal{P}(\mathfrak{E}')$ for each object \mathfrak{E}' and morphism $e: \mathfrak{E}' \to \mathfrak{E}$ of \mathbf{E} , given by $\mathcal{P}(e); p$. So, we can define $C_{\mathfrak{E}}(\mathcal{C})(\mathfrak{E}')$ to be $\bigvee_{\mathfrak{e}:\mathfrak{E}'\to\mathfrak{E}}\mathcal{C}$, meaning \mathcal{C} producted with itself once for each morphism $\mathfrak{E}' \to \mathfrak{E}$, and every $\mathcal{P}(\mathfrak{E}')$ will have a morphism to $C_{\mathfrak{E}}(\mathcal{C})(\mathfrak{E}')$ given by $\langle \mathcal{P}(e); p \rangle_{e:\mathfrak{E}'\to\mathfrak{E}}$. Also, given an object \mathfrak{E}'' and morphism $e': \mathfrak{E}'' \to \mathfrak{E}'$, we can define $C_{\mathfrak{E}}(e')$ to be $\langle \pi_{e';e} \rangle_{e:\mathfrak{E}'\to\mathfrak{E}}$, and then the collection of morphisms presented earlier is guaranteed to form a natural transformation from \mathcal{P} to $C_{\mathfrak{E}}(\mathcal{C})$, i.e. a morphism of $\mathbf{E} \pitchfork \mathbf{C}$. Finally, we can define $c_{\mathfrak{E},\mathcal{C}}: \pi_{\mathfrak{E}}(I_{\mathfrak{E}}(\mathcal{C})) \to \mathcal{C}$ to be $\pi_{id_{\mathfrak{E}}}: (\bigotimes_{e:\mathfrak{E}\to\mathfrak{E}}\mathcal{C}) \to \mathcal{C}$, and so $\langle \mathcal{P}(e); p \rangle_{e:\mathfrak{E}\to\mathfrak{E}; \pi_{id}}$ equals $\mathcal{P}(id_{\mathfrak{E}}); p$ which equals p as desired. $C_{\mathfrak{E}}$ can be extended into a functor because & is functorial and π is natural.

A similar argument applies to the left adjoint. Let $I_{\mathfrak{E}}: \mathbb{C} \to \mathbb{E} \pitchfork \mathbb{C}$ be a left adjoint to $\pi_{\mathfrak{E}}$. This means that there is a morphism $i_{\mathcal{E},\mathcal{C}}: \mathcal{C} \to \pi_{\mathfrak{E}}(I_{\mathfrak{E}}(\mathcal{C}))$ for every object \mathcal{C} of \mathbb{C} , and for every object \mathcal{P} of $\mathbb{E} \pitchfork \mathbb{C}$ and morphism $p: \mathcal{C} \to \pi_{\mathfrak{E}}(\mathcal{P})$, there exists a unique morphism $p^{\leftarrow}: I_{\mathfrak{E}}(\mathcal{C}) \to \mathcal{P}$ in $\mathbb{E} \pitchfork \mathbb{C}$ such that $i_{\mathcal{E},\mathcal{C}}; \pi_{\mathfrak{E}}(p^{\leftarrow})$ equals p. To construct such a $I_{\mathfrak{E}}$, recall that an object of $\mathbb{E} \pitchfork \mathbb{C}$ is a functor from \mathbb{E} to \mathbb{C} . Consequently, for any such object \mathcal{P} the morphism $p: \mathcal{C} \to \pi_{\mathfrak{E}}(\mathcal{P})$ provides a morphism to $\mathcal{P}(\mathfrak{E}')$ for each object \mathfrak{E}' and morphism $e: \mathfrak{E} \to \mathfrak{E}'$ of \mathbb{E} , given by $p; \mathcal{P}(e)$. So, we can define $C_{\mathfrak{E}}(\mathcal{C})(\mathfrak{E}')$ to be $\bigoplus_{e:\mathfrak{E}\to\mathfrak{E}'}\mathcal{C}$, meaning \mathcal{C} coproducted with itself once for each morphism $\mathfrak{E} \to \mathfrak{E}'$, and every $\mathcal{P}(\mathfrak{E}')$ will have a morphism from $C_{\mathfrak{E}}(\mathcal{C})(\mathfrak{E}')$ given by $[p; \mathcal{P}(e)]_{e:\mathfrak{E}\to\mathfrak{E}'}$. Also, given an object \mathfrak{E}'' and morphism $e': \mathfrak{E}' \to \mathfrak{E}''$, we can define $C_{\mathfrak{E}}(e')$ to be $[\kappa_{\mathfrak{e};e'}]_{e:\mathfrak{E}\to\mathfrak{E}'}$, and then the collection of morphisms presented earlier is guaranteed to form a natural transformation from $C_{\mathfrak{E}}(\mathcal{C})$ to \mathcal{P} , i.e. a morphism of $\mathbb{E} \pitchfork \mathbb{C}$. Finally, we can define $i_{\mathfrak{E},\mathfrak{C}: \mathcal{C} \to \pi_{\mathfrak{E}}(C_{\mathfrak{E}}(\mathcal{C}))$ to be $\kappa_{id_{\mathfrak{E}}}: \mathcal{C} \to \bigoplus_{e:\mathfrak{E}\to\mathfrak{E}}\mathcal{C}$, and so $\kappa_{id_{\mathfrak{E}}}; [p; \mathfrak{P}(e)]_{e:\mathfrak{E}\to\mathfrak{E}}$ equals $p; \mathfrak{P}(id_{\mathfrak{E}})$ which equals p as desired. $I_{\mathfrak{E}}$ can be extended into a functor because \oplus is functorial and κ is natural.