Colimits

Ross Tate

October 20, 2014

Definition (Coproduct of \mathcal{C}_{1} and \mathcal{C}_{2}, where \mathcal{C}_{1} and \mathcal{C}_{2} are objects of \mathbf{C}). An object, denoted $\mathcal{C}_{1} \oplus \mathcal{C}_{2}$ (although more traditionally with $\mathcal{C}_{1}+\mathcal{C}_{2}$), along with morphisms $\kappa_{1}: \mathcal{C}_{1} \rightarrow \mathcal{C}_{1} \oplus \mathcal{C}_{2}$ and $\kappa_{2}: \mathcal{C}_{2} \rightarrow \mathcal{C}_{1} \oplus \mathcal{C}_{2}$ with the property that, for any object \mathcal{C} and morphisms $f_{1}: \mathcal{C}_{1} \rightarrow \mathcal{C}$ and $f_{2}: \mathcal{C}_{2} \rightarrow \mathcal{C}$, there exists a unique morphism, denoted [f_{1}, f_{2}], making the following diagram commute:

Example. In Set, $A \oplus B$ is the disjoint union $A+B$ of A and B. In Mon, $\mathcal{A} \oplus \mathcal{B}$ is the set of alternating lists of A and B non-identity elements with a variant of concatonenation as its multiplication. In Rel(2), the coproduct of $\left\langle A, \sqsubset_{1}\right\rangle$ and $\left\langle B, \sqsubset_{2}\right\rangle$ is the disjoint union of the two sets where left elements are related by \sqsubset_{1} and right elements are related by \sqsubset_{2} and no left and right elements are related to each other. In $\mathbf{C a t}, \mathbf{A} \otimes \mathbf{B}$ uses the disjoint union of the objects and uses alternating paths for morphisms. In Rel, the disjoint union of A and B is the coproduct of A and B.

Definition (Initial Object of C). An object, denoted 0, with the property that, for any object \mathcal{C}, there exists a unique morphism, denoted [], from 0 to \mathcal{C}.

Example. In Set, any empty set is an initial object. In Mon, any singleton monoid is an initial monoid. In Rel(2), $\langle 0, \perp\rangle$ is the initial binary relation. In Cat, any category with no objects is an initial category. In Rel, any empty set is an initial object.

Definition (Coequalizer of morphisms $f_{1}, f_{2}: \mathcal{C}_{1} \rightarrow \mathcal{C}_{2}$). An object \mathcal{E} along with a morphism $\kappa: \mathcal{C}_{1} \rightarrow \mathcal{E}$ such that $f_{1} ; \kappa=f_{2} ; \kappa$ and with the property that, for any other object \mathcal{C} and morphism $f: \mathcal{C}_{1} \rightarrow \mathcal{C}$ such that $f_{1} ; f=f_{2} ; f$, there exists a unique morphism $[f]: \mathcal{E} \rightarrow \mathcal{C}$ such that $[f] ; \kappa=f$.

Example. In Set, the coequalizer of functions $f_{1}, f_{2}: X \rightarrow Y$ is the set $\underset{\sim}{\approx}$ where $y_{1} \approx y_{2}$ is defined as $\exists x . f_{1}(x)=$ $y_{1} \wedge f_{2}(x)=y_{2}$. In Mon, one uses the above construction except furthermore requires \approx to satisfy $\forall y_{1}, y_{1}^{\prime}, y_{2}, y_{2}^{\prime} . y_{1} \approx$ $y_{1}^{\prime} \wedge y_{2} \approx y_{2}^{\prime} \Rightarrow y_{1} * y_{2} \approx y_{1}^{\prime} * y_{2}^{\prime}$. In $\operatorname{Rel}(2)$, the coequalizer of functions $f_{1}, f_{2}: X \rightarrow Y$ is the set $\frac{Y}{\approx}$ where $y_{1} \approx y_{2}$ is defined as $\exists x . f_{1}(x)=y_{1} \wedge f_{2}(x)=y_{2}$, and two equivalence classes are related if any of their elements are related. In Cat, one builds the coequalizer for the components on objects and then combines the above techniques to build equivalence classes of morphisms. Rel does not have coequalizers for some pairs of binary relations.

Definition (Pushout of morhisms $f_{1}: \mathcal{C}_{3} \rightarrow \mathcal{C}_{1}$ and $f_{2}: \mathcal{C}_{3} \rightarrow \mathcal{C}_{2}$). An object \mathcal{P} along with morphisms $\kappa_{1}: \mathcal{C}_{1} \rightarrow \mathcal{P}$ and $\kappa_{2}: \mathcal{C}_{2} \rightarrow \mathcal{P}$ such that $f_{1} ; \kappa_{1}=f_{2} ; \kappa_{2}$ and with the property that, for any object \mathcal{C} and morphisms $g_{1}: \mathcal{C}_{1} \rightarrow \mathcal{C}$ and $g_{2}: \mathcal{C}_{2} \rightarrow \mathcal{C}$ such that $f_{1} ; g_{1}=f_{2} ; g_{1}$, there exists a unique morphism, denoted $\left[g_{1}, g_{2}\right]$, making the following diagram commute:

Example. In Set, the pushout of functions $f_{1}: Z \rightarrow X$ and $f_{2}: Z \rightarrow Y$ is the set $\frac{X+Y}{\approx}$, where \approx is the weakest equivalence such that $\forall z: Z$. $\operatorname{inl}\left(f_{1}(z)\right) \approx \operatorname{inr}\left(f_{2}(z)\right)$, along with the obvious coprojection functions.

Exercise 1. Note that the construction of pushouts in Set is built from a coproduct and a coequalizer. Prove that if a category has coproducts for all objects and equalizers for all parallel morphism pairs, then it has pullbacks for all morphism pairs with the same codomain.
Definition (Colimit of a functor $D: \mathbf{S} \rightarrow \mathbf{C}$). An object \mathcal{L} of \mathbf{C} along with a natural transformation $\kappa: D \Rightarrow \mathcal{L}$ with the property that, for any object \mathcal{C} and natural transformation $\alpha: D \Rightarrow \mathcal{C}$, there exists a unique morphism $[\alpha]: \mathcal{L} \rightarrow \mathcal{C}$ such that $\kappa ;[\alpha]$ equals α.

Definition (Scheme and Diagram). Given $D: \mathbf{S} \rightarrow \mathbf{C}$, the category \mathbf{S} is called the scheme and the functor D is called the diagram in \mathbf{C}.
Example. Coproducts correspond to colimits of diagrams with scheme 2, the category with 2 objects and only identity morphisms. Initial objects correspond to colimits of the diagram with scheme $\mathbf{0}$, the category with no objects or morphisms. Coequalizers correspond to colimits of diagrams with the scheme $\bullet_{1} \rightarrow \bullet_{2}$. Pushouts correspond to colimits of diagrams with the scheme $\bullet_{1} \leftarrow \bullet_{3} \rightarrow \bullet_{2}$.
Exercise 2. Prove that a category has colimits for all diagrams with scheme \mathbf{S} if and only if the functor Δ from \mathbf{C} to $\mathbf{S} \rightarrow \mathbf{C}$, mapping each object to its corresponding constant functor and each morphism to its corresponding constant natural transformation, has a left adjoint.
Remark. Given a functor $D: \mathbf{S} \rightarrow \mathbf{C}$, a colimit is a functor $L: \mathbf{1} \rightarrow \mathbf{C}$ and natural transformation $\kappa: D \Rightarrow\langle \rangle_{\mathbf{S}} ; L$ with the property that, for any functor $C: \mathbf{1} \rightarrow \mathbf{C}$ and natural transformation $\alpha: D \Rightarrow\langle \rangle_{\mathbf{S}} ; L$, there exists a unique natural transformation $[\alpha]: L \Rightarrow C$ such that the natural transformation specified in the following diagram equals α :

Definition (Finitely Cocomplete). A category that has a colimit for all diagrams with finite schemes, meaning the scheme has a finite set of objects and morphisms.
Exercise 3. Prove that a category is finitely cocomplete if and only if it has a initial objects, coproducts, and coequalizers.
Definition (Preserves S-Colimits). A functor $F: \mathbf{C} \rightarrow \mathbf{D}$ with the property that, for any D, L, and κ, if $L: \mathbf{1} \rightarrow \mathbf{C}$ and $\kappa: D \Rightarrow\langle \rangle ; L$ is a colimit of $D: \mathbf{S} \rightarrow \mathbf{C}$, then $L ; F$ and the following natural transforation is a colimit of $D ; F$:

Definition ((Finitely) Cocontinuous). A functor that preserves all colimits is called cocontinuous. A functor that preserves all finite colimits is called finitely cocontinuous.

Exercise 4. Prove that every left-adjoint functor is cocontinuous.

