Colimits

Ross Tate

October 20, 2014

Definition (Coproduct of C_1 and C_2 , where C_1 and C_2 are objects of **C**). An object, denoted $C_1 \oplus C_2$ (although more traditionally with $C_1 + C_2$), along with morphisms $\kappa_1 : C_1 \to C_1 \oplus C_2$ and $\kappa_2 : C_2 \to C_1 \oplus C_2$ with the property that, for any object C and morphisms $f_1 : C_1 \to C$ and $f_2 : C_2 \to C$, there exists a unique morphism, denoted $[f_1, f_2]$, making the following diagram commute:

Example. In Set, $A \oplus B$ is the disjoint union A + B of A and B. In Mon, $A \oplus B$ is the set of alternating lists of A and B non-identity elements with a variant of concatonenation as its multiplication. In Rel(2), the coproduct of $\langle A, \Box_1 \rangle$ and $\langle B, \Box_2 \rangle$ is the disjoint union of the two sets where left elements are related by \Box_1 and right elements are related by \Box_2 and no left and right elements are related to each other. In Cat, $A \otimes B$ uses the disjoint union of the objects and uses alternating paths for morphisms. In Rel, the disjoint union of A and B is the coproduct of A and B.

Definition (Initial Object of **C**). An object, denoted 0, with the property that, for any object C, there exists a unique morphism, denoted [], from 0 to C.

Example. In Set, any empty set is an initial object. In Mon, any singleton monoid is an initial monoid. In Rel(2), $\langle 0, \perp \rangle$ is the initial binary relation. In Cat, any category with no objects is an initial category. In Rel, any empty set is an initial object.

Definition (Coequalizer of morphisms $f_1, f_2 : C_1 \to C_2$). An object \mathcal{E} along with a morphism $\kappa : C_1 \to \mathcal{E}$ such that $f_1; \kappa = f_2; \kappa$ and with the property that, for any other object \mathcal{C} and morphism $f : C_1 \to \mathcal{C}$ such that $f_1; f = f_2; f$, there exists a unique morphism $[f] : \mathcal{E} \to \mathcal{C}$ such that $[f]; \kappa = f$.

Example. In Set, the coequalizer of functions $f_1, f_2 : X \to Y$ is the set $\frac{Y}{\approx}$ where $y_1 \approx y_2$ is defined as $\exists x. f_1(x) = y_1 \wedge f_2(x) = y_2$. In **Mon**, one uses the above construction except furthermore requires \approx to satisfy $\forall y_1, y'_1, y_2, y'_2$. $y_1 \approx y'_1 \wedge y_2 \approx y'_2 \Rightarrow y_1 * y_2 \approx y'_1 * y'_2$. In **Rel**(2), the coequalizer of functions $f_1, f_2 : X \to Y$ is the set $\frac{Y}{\approx}$ where $y_1 \approx y_2$ is defined as $\exists x. f_1(x) = y_1 \wedge f_2(x) = y_2$, and two equivalence classes are related if any of their elements are related. In **Cat**, one builds the coequalizer for the components on objects and then combines the above techniques to build equivalence classes of morphisms. **Rel** does not have coequalizers for some pairs of binary relations.

Definition (Pushout of morhisms $f_1 : C_3 \to C_1$ and $f_2 : C_3 \to C_2$). An object \mathcal{P} along with morphisms $\kappa_1 : C_1 \to \mathcal{P}$ and $\kappa_2 : C_2 \to \mathcal{P}$ such that $f_1 ; \kappa_1 = f_2 ; \kappa_2$ and with the property that, for any object \mathcal{C} and morphisms $g_1 : C_1 \to \mathcal{C}$ and $g_2 : C_2 \to \mathcal{C}$ such that $f_1 ; g_1 = f_2 ; g_1$, there exists a unique morphism, denoted $[g_1, g_2]$, making the following diagram commute:

Example. In Set, the pushout of functions $f_1 : Z \to X$ and $f_2 : Z \to Y$ is the set $\frac{X+Y}{\approx}$, where \approx is the weakest equivalence such that $\forall z : Z$. $\operatorname{inl}(f_1(z)) \approx \operatorname{inr}(f_2(z))$, along with the obvious coprojection functions.

Exercise 1. Note that the construction of pushouts in **Set** is built from a coproduct and a coequalizer. Prove that if a category has coproducts for all objects and equalizers for all parallel morphism pairs, then it has pullbacks for all morphism pairs with the same codomain.

Definition (Colimit of a functor $D : \mathbf{S} \to \mathbf{C}$). An object \mathcal{L} of \mathbf{C} along with a natural transformation $\kappa : D \Rightarrow \mathcal{L}$ with the property that, for any object \mathcal{C} and natural transformation $\alpha : D \Rightarrow \mathcal{C}$, there exists a unique morphism $[\alpha] : \mathcal{L} \to \mathcal{C}$ such that $\kappa; [\alpha]$ equals α .

Definition (Scheme and Diagram). Given $D : \mathbf{S} \to \mathbf{C}$, the category \mathbf{S} is called the scheme and the functor D is called the diagram in \mathbf{C} .

Example. Coproducts correspond to colimits of diagrams with scheme 2, the category with 2 objects and only identity morphisms. Initial objects correspond to colimits of the diagram with scheme **0**, the category with no objects or morphisms. Coequalizers correspond to colimits of diagrams with the scheme $\bullet_1 \rightrightarrows \bullet_2$. Pushouts correspond to colimits of diagrams with the scheme $\bullet_1 \rightrightarrows \bullet_2$.

Exercise 2. Prove that a category has colimits for all diagrams with scheme **S** if and only if the functor Δ from **C** to **S** \rightarrow **C**, mapping each object to its corresponding constant functor and each morphism to its corresponding constant natural transformation, has a left adjoint.

Remark. Given a functor $D : \mathbf{S} \to \mathbf{C}$, a colimit is a functor $L : \mathbf{1} \to \mathbf{C}$ and natural transformation $\kappa : D \Rightarrow \langle \rangle_{\mathbf{S}}; L$ with the property that, for any functor $C : \mathbf{1} \to \mathbf{C}$ and natural transformation $\alpha : D \Rightarrow \langle \rangle_{\mathbf{S}}; L$, there exists a unique natural transformation $[\alpha] : L \Rightarrow C$ such that the natural transformation specified in the following diagram equals α :

Definition (Finitely Cocomplete). A category that has a colimit for all diagrams with finite schemes, meaning the scheme has a finite set of objects and morphisms.

Exercise 3. Prove that a category is finitely cocomplete if and only if it has a initial objects, coproducts, and coequalizers.

Definition (Preserves S-Colimits). A functor $F : \mathbb{C} \to \mathbb{D}$ with the property that, for any D, L, and κ , if $L : \mathbb{1} \to \mathbb{C}$ and $\kappa : D \Rightarrow \langle \rangle; L$ is a colimit of $D : \mathbb{S} \to \mathbb{C}$, then L; F and the following natural transformation is a colimit of D; F:

Definition ((Finitely) Cocontinuous). A functor that preserves all colimits is called *cocontinuous*. A functor that preserves all finite colimits is called *finitely* cocontinuous.

Exercise 4. Prove that every left-adjoint functor is cocontinuous.