Monoids

Ross Tate

September 5, 2014

Exercise 1. Given monoids \mathcal{A} and \mathcal{B}, give a monoidal structure $\mathcal{A} \& \mathcal{B}$ to the set $A \times B$ such that the projection functions π_{A} and π_{B} are monoid homomorphisms from $\mathcal{A} \& \mathcal{B}$ to \mathcal{A} and \mathcal{B} respectively.

Notation. $\mathcal{A} \& \mathcal{B}$ is called the product of \mathcal{A} and \mathcal{B}, though it is more commonly denoted as $\mathcal{A} \times \mathcal{B}$ and sometimes called the direct product.

Exercise 2. Determine the monoid "丁" with the property that for every monoid \mathcal{A} there is exactly one monoid homomorphism from \mathcal{A} to \top.

Exercise 3. Determine the monoid " 0 " with the property that for every monoid \mathcal{A} there is exactly one monoid homomorphism from 0 to \mathcal{A}.

Remark. \top is called the terminal monoid (more commonly denoted with 1), and 0 is called the initial monoid.
Definition. A multilinear homomorphism from \mathcal{A} and \mathcal{B} to \mathcal{C} is a function $f: A \times B \rightarrow C$ such that $f\left(e_{\mathcal{A}}, b\right)=e_{\mathcal{C}}$ always, $f\left(a_{1} * a_{2}, b\right)=f\left(a_{1}, b\right) * f\left(a_{2}, b\right)$ always, $f\left(a, e_{\mathcal{B}}\right)=e_{\mathcal{C}}$ always, and $f\left(a, b_{1} * b_{2}\right)=f\left(a, b_{1}\right) * f\left(a, b_{2}\right)$ always. In other words, fixing either argument produces a monoid homomorphism.

Definition. Given a type τ and a binary relation $\approx: \tau \times \tau \rightarrow$ Prop, the type $\frac{\tau}{\approx}$ is called the quotient. Set theoretically, it is the set of all equivalence classes of \approx on τ. There is a function $\lambda t . \frac{t}{\approx}: \tau \rightarrow \frac{\tau}{\approx}$ mapping each element of τ to its equivalence class. To construct functions from $\underset{\approx}{\approx}$ to another type τ^{\prime}, one uses select t from q in $e[t]$ using \mathfrak{p}, where q is a $\frac{\tau}{\approx}, t$ is a variable bound to some τ value in $q, e[t]$ is an expression of type τ^{\prime} indicating how to use t, and \mathfrak{p} is a proof that $\forall t, t^{\prime}: \tau . t \approx t^{\prime} \Rightarrow e[t]=e\left[t^{\prime}\right]$.

Definition. Given monoids \mathcal{A} and \mathcal{B}, define the equivalence relation \approx on $\mathbb{L}(A \times B)$ to be the least equivalence relation such that:

1. $\forall \vec{m}_{1}, \vec{m}_{1}^{\prime}, \vec{m}_{2}, \vec{m}_{2}^{\prime}: \mathbb{L}(A \times B) \cdot \vec{m}_{1} \approx \vec{m}_{1}^{\prime} \wedge \vec{m}_{2} \approx \vec{m}_{2}^{\prime} \Longrightarrow \vec{m}_{1}+\vec{m}_{2} \approx \vec{m}_{1}^{\prime}+\vec{m}_{2}^{\prime}$
2. $\forall b: B .\left[\left\langle e_{\mathcal{A}}, b\right\rangle\right] \approx[]$
3. $\forall a_{1}, a_{2}: A, b: B .\left[\left\langle a_{1}, b\right\rangle,\left\langle a_{2}, b\right\rangle\right] \approx\left[\left\langle a_{1} * a_{2}, b\right\rangle\right]$
4. $\forall a: A \cdot\left[\left\langle a, e_{\mathcal{B}}\right\rangle\right] \approx[]$
5. $\forall a: A, b_{1}, b_{2}: B .\left[\left\langle a, b_{1}\right\rangle,\left\langle a, b_{2}\right\rangle\right] \approx\left[\left\langle a, b_{1} * b_{2}\right\rangle\right]$

We use requirement 1 to impose a monoidal structure $\mathcal{A} \otimes \mathcal{B}$ on the quotient set $\frac{\mathbb{L}(A \times B)}{\approx}$:

Operator $\frac{+}{\approx}=\lambda q_{1}, q_{2}$. select \vec{m}_{1} from q_{1} in (select \vec{m}_{2} from q_{2} in $\frac{\vec{m}_{1}+\vec{m}_{2}}{\approx}$ using.) using.
Associativity Follows from associativity of ++ and the fact that quotienting only makes things more equal
Identity Element $=\frac{[]}{\approx}$
Identity Follows from identity of [] and the fact that quotienting only makes things more equal

Exercise 4. Show that, for any monoid \mathcal{C}, there is a bijection between the set of multilinear homomorphisms from \mathcal{A} and \mathcal{B} to \mathcal{C} and the set of monoid homomorphisms from $\mathcal{A} \otimes \mathcal{B}$ to \mathcal{C}.

Notation. $\mathcal{A} \otimes \mathcal{B}$ is called the tensor (product) of \mathcal{A} and \mathcal{B}.

