Monoids

Ross Tate

September 5, 2014

Exercise 1. Given monoids \mathcal{A} and \mathcal{B} , give a monoidal structure $\mathcal{A} \& \mathcal{B}$ to the set $A \times B$ such that the projection functions π_A and π_B are monoid homomorphisms from $\mathcal{A} \& \mathcal{B}$ to \mathcal{A} and \mathcal{B} respectively.

Notation. $\mathcal{A} \& \mathcal{B}$ is called the *product* of \mathcal{A} and \mathcal{B} , though it is more commonly denoted as $\mathcal{A} \times \mathcal{B}$ and sometimes called the *direct* product.

Exercise 2. Determine the monoid " \top " with the property that for every monoid \mathcal{A} there is exactly one monoid homomorphism from \mathcal{A} to \top .

Exercise 3. Determine the monoid "0" with the property that for every monoid \mathcal{A} there is exactly one monoid homomorphism from 0 to \mathcal{A} .

Remark. \top is called the *terminal* monoid (more commonly denoted with 1), and 0 is called the *initial* monoid.

Definition. A multilinear homomorphism from \mathcal{A} and \mathcal{B} to \mathcal{C} is a function $f : A \times B \to C$ such that $f(e_{\mathcal{A}}, b) = e_{\mathcal{C}}$ always, $f(a_1 * a_2, b) = f(a_1, b) * f(a_2, b)$ always, $f(a, e_{\mathcal{B}}) = e_{\mathcal{C}}$ always, and $f(a, b_1 * b_2) = f(a, b_1) * f(a, b_2)$ always. In other words, fixing either argument produces a monoid homomorphism.

Definition. Given a type τ and a binary relation $\approx: \tau \times \tau \to \operatorname{Prop}$, the type $\frac{\tau}{\approx}$ is called the quotient. Set theoretically, it is the set of all equivalence classes of \approx on τ . There is a function λt . $\frac{t}{\approx}: \tau \to \frac{\tau}{\approx}$ mapping each element of τ to its equivalence class. To construct functions from $\frac{\tau}{\approx}$ to another type τ' , one uses select t from q in e[t] using \mathfrak{p} , where q is a $\frac{\tau}{\approx}$, t is a variable bound to some τ value in q, e[t] is an expression of type τ' indicating how to use t, and \mathfrak{p} is a proof that $\forall t, t': \tau. t \approx t' \Rightarrow e[t] = e[t']$.

Definition. Given monoids \mathcal{A} and \mathcal{B} , define the equivalence relation \approx on $\mathbb{L}(A \times B)$ to be the least equivalence relation such that:

- 1. $\forall \vec{m}_1, \vec{m}_1', \vec{m}_2, \vec{m}_2' : \mathbb{L}(A \times B). \ \vec{m}_1 \approx \vec{m}_1' \land \vec{m}_2 \approx \vec{m}_2' \implies \vec{m}_1 \leftrightarrow \vec{m}_2 \approx \vec{m}_1' \leftrightarrow \vec{m}_2'$
- 2. $\forall b : B. [\langle e_{\mathcal{A}}, b \rangle] \approx []$

3. $\forall a_1, a_2 : A, b : B. [\langle a_1, b \rangle, \langle a_2, b \rangle] \approx [\langle a_1 * a_2, b \rangle]$

- 4. $\forall a : A. [\langle a, e_{\mathcal{B}} \rangle] \approx []$
- 5. $\forall a : A, b_1, b_2 : B. [\langle a, b_1 \rangle, \langle a, b_2 \rangle] \approx [\langle a, b_1 * b_2 \rangle]$

We use requirement 1 to impose a monoidal structure $\mathcal{A} \otimes \mathcal{B}$ on the quotient set $\frac{\mathbb{L}(A \times B)}{\approx}$:

Operator $\frac{++}{\approx} = \lambda q_1, q_2$. select \vec{m}_1 from q_1 in (select \vec{m}_2 from q_2 in $\frac{\vec{m}_1 + + \vec{m}_2}{\approx}$ using.) using. **Associativity** Follows from associativity of ++ and the fact that quotienting only makes things more equal **Identity Element** = $\frac{[]}{\approx}$ **Identity** Follows from identity of [] and the fact that quotienting only makes things more equal

Exercise 4. Show that, for any monoid C, there is a bijection between the set of multilinear homomorphisms from \mathcal{A} and \mathcal{B} to C and the set of monoid homomorphisms from $\mathcal{A} \otimes \mathcal{B}$ to C.

Notation. $\mathcal{A} \otimes \mathcal{B}$ is called the *tensor (product)* of \mathcal{A} and \mathcal{B} .