Monads

Ross Tate

October 10, 2014

Exercise 1. Prove that for any 2-category **C** and any adjunction $f \dashv g$ in **C**, one can build a monad in **C** whose underlying morphism is f; g.

Exercise 2. Prove that, in the 2-category **CAT**, for every monad \mathcal{M} with underlying functor M on a category **C** there is some adjunction $F \dashv U$ such that M equals F; U. Hint: use the underlying functor $U : \operatorname{Alg}(\mathcal{M}) \to \mathbf{C}$ as the right adjoint.

Remark. The above theorem holds for monads in **CAT** but not necessarily for monads in other 2-categories.