Limits

Ross Tate

October 8, 2014

Exercise 1. Prove that for any object \mathcal{A} of any category **C**, the object $\mathcal{A} \& \top$ (if it exists) is isomorphic to \mathcal{A} .

Exercise 2. Prove that, in any 2-category, if morphisms $C_1 \xrightarrow{f_1} C_2$ and $C_2 \xrightarrow{f_2} C_3$ are both left adjoints, then their composition f_1 ; f_2 is also a left adjoint.

Exercise 3. The monoid $\mathcal{A} \& \mathcal{B}$ is commutative if both \mathcal{A} and \mathcal{B} are commutative, and in that case is (with the appropriate projection homomorphisms) also the product of \mathcal{A} and \mathcal{B} in **CommMon**. Prove that there are morphisms $\kappa_{\mathcal{A}}$ and $\kappa_{\mathcal{B}}$ demonstrating that $\mathcal{A} \& \mathcal{B}$ is also the coproduct of \mathcal{A} and \mathcal{B} in **CommMon**. That is, prove that **CommMon** has *biproducts*, meaning it has products and coproducts and they coincide on objects.