Categories

Ross Tate

September 4, 2014

Exercise 1. Give, for any category C and any object C : C, a monoidal structure on the set $C \to C$.

Exercise 2. Prove that for any monoid \mathcal{M} there is a category with one object \star such that $\star \to \star$ equals M.

Exercise 3. Show that the above extends to a functor from Mon to Cat.

Exercise 4. Show that there is a functor $F : \mathbf{Set} \to \mathbf{Mon}$ and a functor $U : \mathbf{Mon} \to \mathbf{Set}$ such that F ; U equals \mathbb{L} . Hint: U maps a monoid to its underlying set.

Exercise 5. Prove that any category that has exactly one functor to it from each other category must be isomorphic to the category **1**.

Exercise 6. Prove that any category that has exactly one functor from it to each other category must be isomorphic to the category **0**.

Exercise 7. Given categores **A** and **B**, define a category $\mathbf{A} \times \mathbf{B}$ with "projection" functors π_A and π_B from it to **A** and **B** respectively.